• Title/Summary/Keyword: Electromagnet

Search Result 251, Processing Time 0.037 seconds

Development of A Hoist Control Equipment for Shot Ball Transfer (쇼트볼 이송을 위한 호이스트 자동제어 장치 개발)

  • Choi, Jong-Jun;Choi, Young-Kiu
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • The purpose of this paper is to build on automatic system for the shot ball transfer hoist. The shot ball is used to remove completely paint or leftovers before spreading the new paint on a large vessels surface. The shot ball is made of melted iron through cooling process, and it is transferred to hopper by electromagnet of hoist. Currently, the transfer process of the shot ball is performed by manual operation, and the transfer process is inefficient. So we have developed an automatic system to replace the manual system. The developed automation systems have efficient and accurate position control performance.

An Optimization of Dynamic Elements for Eddy Current Braking System of High Speed Train (고속전철의 와전류 제동장치 동적 최적화 연구)

  • Park, Chan-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.345-350
    • /
    • 2001
  • Dynamic behavior of high speed train is very important because the high speed train should be safe and satisfied with the ride comfort. An eddy current brake system is mounted on trailer bogie and wheelset. The eddy current braking force longitudinally exerts on the articulated trailer bogie and the attraction force vertically exerts on the wheelset. Because a frame of eddy current brake system is flexible, these forces generate the vertical vibration at middle point of the frame. Also, the vibration change the vertical clearance between an electromagnet and top of rail which affect the magnitude of braking and attracting forces. Therefore, the dynamic behavior of the eddy current braking system must be predicted for design the dynamic characteristic of its mounting system when normally operate on rail which have irregularity. Vampire program is used for prediction of the dynamic behavior of an eddy current braking system. Five design variables and five performance index are considered for optimization through D-optimal experimental design in this paper. Also model center is used to search the optimal point for sum of performance index with variational matric method.

  • PDF

CONTROL PERFORMANCE IMPROVEMENT OF AN EMV SYSTEM USING A PM/EM HYBRID ACTUATOR

  • Ahn, H.J.;Chang, J.U.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.429-436
    • /
    • 2007
  • In this study, we improved control performance of an EMV (electromechanical valve) system using a PM/EM (permanent magnet/electromagnet) hybrid EMA (electromagnetic actuator) and showed the feasibilities of both soft landing and fast transition of the EMV system using a simple PID control. The conventional EMV systems using only EM show significant nonlinear characteristics. Therefore, it is very difficult to control the valve position and several complex control schemes are used. This paper focused on the control performance improvement using a PM/EM hybrid actuator. In particular, a PM is used as a key design parameter such as a bias current of a magnetic bearing in order to improve the linear characteristic of the actuator, although most PM/EM hybrid actuators use a PM as a power saver during valve-open and -closed states. First, a FE (finite element) analysis was performed to confirm its linear static force characteristics. Then, both a test rig and a valve control system were built in order to prove experimentally the control performance improvement of the actuator. Finally, feasibilities of both soft landing and fast transition of the system were shown experimentally through gain-scheduled PID (proportional derivative integral) control.

Identification of Dynamic property of Squeeze Film Damper Using Magnetic Fluid (자성유체를 이용한 스퀴즈 필름 댐퍼의 동특성 동정)

  • Ahn, Young Kong;Ha, Jong-Yong;Kim, Yong-Han;Ahn, Kyoung Kwan;Yang, Bo-Suk;Morishita, Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.227-230
    • /
    • 2005
  • The paper presents the identification of dynamic property of a rotor system with a squeeze film damper (SFD) using magnetic fluid. An electromagnet is installed in the inner damper of the SFD. The magnetic fluid is well known as a functional fluid. Its rheological property can be changed by controlling the applied current to the fluid and the fluid can be used as lubricant. Basically, the proposed SFD has the characteristics of a conventional SFD without an applied current, while the damping and stiffness properties change according to the variation of the applied electric current. Therefore, when the applied current is changed, the whirling vibration of the rotor system can be effectively reduced. The clustering-based hybrid evolutionary algorithm (CHEA) is used to identify linear stiffness and damping coefficients of the SFD based on measured unbalance responses.

  • PDF

A study on the force control of MR cylinder with built-in valves (밸브 내장형 MR 실린더를 이용한 힘 제어에 관한 연구)

  • Song J.Y.;Ahn K.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1018-1023
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated for fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has ${\varphi}30mm{\times}300mm\;and\;{\varphi}28.5mm{\times}120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa and contact force of 320N were obtained with the input current of 1.5A. The rising time of force was 1.1s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the force control.

  • PDF

Fabrication and Test of HTS Flux Pump Combined with Solar Energy System (태양광에너지 시스템이 결합된 HTS 자속펌프의 제작 및 예비실험)

  • Kim, Dae-Wook;Chung, Yoon-Do;Jo, Hyun-Chul;Yoon, Yong-Soo;Kim, Hyun-Ki;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.22-26
    • /
    • 2011
  • As new one of superconducting power supplies, we proposed an HTS flux pump utilized a solar energy system. As an eternal electric energy can be converted by the solar system, the solar energy system is promisingly applied as an energy source in the power applications. Especially, since the solar energy system played a role in conventional utility power, total power consumption of the flux pump system are provided by solar energy. That means its operating efficiency is remarkably improved compared with developed flux pumps. A solar energy system is comprised of solar panel, photo-voltaic (PV) controller, converter and battery. The HTS flux pump consists of an electromagnet, two thermal heaters and a Bi-2223 magnet. In this paper, we describe the possibility the fusion technology between superconducting power supply and solar energy system. As a fundamental step, the fabrication, structure and experimental results are explained.

Magnetic Field Standards Using Magnetic Resonance

  • Park, Po Gyu;Kim, Wan-Seop;Joo, Sung Jung;Lee, Hyung Kew
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • The nuclear magnetic resonance (NMR) and atomic magnetic resonance (AMR) plays a fundamental role in achieving a high accuracy of magnetic field measurements. Magnetic field unit (T) was realized based on the shielded proton gyromagnetic ratio (${\gamma}^{\prime}_P$), helium-4 gyromagnetic ratio (${\gamma}_{4He}$) and related techniques. The magnetic field standard system has been disseminated by the NMR magnetometer and electromagnet, a Helmholtz coil system, and AMR magnetometer in the nonmagnetic laboratory. A magnetic field standard below 1 mT has been developed by using Cs and Cs- $^4He$ AMR with automatic compensation of an external magnetic field noise. The standards serve for the calibration of magnetometers and support the test of sensors and materials in the range from $5{\mu}T$ to 2.0 T with (1 to 50) ${\mu}T/T$ uncertainty (k=2).

Dynamic Analysis of a Maglev Conveyor Using an EM-PM Hybrid Magnet

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1571-1578
    • /
    • 2013
  • With the emergence of high-integration array and large area panel process, the need to minimize the generation of particles in the field of semiconductor, LCD and OLED has grown. As an alternative to the conventional roller system, a contactless magnetic conveyor has been proposed to reduce the generation of particles. An EM-PM hybrid which is one of magnetic levitation types is already proposed for the conveyor system. One of problems pointed out with this approach is the vibration caused by the dynamic interaction between conveyor and rail. To reduce the vibration, the introduction of a secondary suspension system which aims to decouple the levitation electromagnet from the main body is proposed. The objective of this study is to develop a dynamic model for the magnetically levitated conveyor, and to investigate the effect of the introduced suspension system. An integrated model of levitation system and rail based on 3D multibody dynamic model is proposed. With the proposed model, the dynamic characteristics of maglev conveyor system are analyzed, and the effect of the secondary suspension and the stiffness and damping are investigated.

Attitude Angle and Drag Coefficient Measurements of Free-Falling Hemisphere Using a Visualization Technique (가시화 기법을 사용한 자유낙하하는 반구모델의 자세각 및 항력계수 측정)

  • Song, Hakyoon;Lee, Sungmin;Lee, Jong Kook;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.619-626
    • /
    • 2017
  • In this work, the effect of attitude angle variation on drag coefficients of hemisphere in a Mach 6 flow has been investigated. Experiments were conducted in a shock tunnel and a free-falling technique was used to minimize flow disturbance by a sting. For attitude and drag coefficient measurements of a free-falling hemisphere, a free-falling technique based on a releasing mechanism with a stair-typed module and an electromagnet was developed. A shadowgraph technique was used for flow visualization using a high-speed camera.

Active Vibration Control System Using Electromagnet Actuator (전자기 액츄애이터를 이용한 능동 진동제어시스템)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Hwang, Don-Ha;Kang, Dong-Sik;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2809-2811
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters, and electromagnetic actuators.

  • PDF