• 제목/요약/키워드: Electrolytic process

검색결과 321건 처리시간 0.032초

알루미늄 7075 합금의 PEO 처리 기술 및 첨가제 영향 분석 (Study of PEO Process for Al 7075 and Effect of additives)

  • 진연호;양재교
    • 한국표면공학회지
    • /
    • 제53권2호
    • /
    • pp.53-58
    • /
    • 2020
  • In this study, we developed plasma electrolytic oxidation (PEO) process for aluminum 7075 alloy to improve the corrosion and mechanical properties. The electrolyte consists of potassium hydroxide and sodium silicate. Additionally, sodium stannate was added into the electrolyte to investigate its effect on PEO film formation. Titanium was used as the counter electrode. Plasma generation voltage reduced from 300V to 150 V by adding 4 g/L of sodium stannate. The thin oxide films were observed by SEM(Scanning Electron Microscopy)/EDS (Energy Dispersive Spectroscopy) for quantitative and qualitative analyses. XRD (X-ray diffraction) and XRF (X-ray Fluorescences) analyses were also carried out to identify oxide layer on aluminum 7075 surface. Vicker's hardness test was performed on the PEO-treated aluminum 7075 surface.

In-process Truing of Metal-bonded Diamond Wheels for Electrolytic In-process Dressing (ELID) Grinding

  • Saleh, Tanveer;Biswas, Indraneel;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.3-6
    • /
    • 2008
  • Electrolytic in-process dressing (ELID) grinding is a new technique for achieving a nanoscale surface finish on hard and brittle materials such as optical glass and ceramics. This process applies an electrochemical dressing on the metal-bonded diamond wheels to ensure constant protrusion of sharp cutting grits throughout the grinding cycle. In conventional ELID grinding, a constant source of pulsed DC power is supplied to the ELID cell, but a feedback mechanism is necessary to control the dressing power and obtain better performance. In this study, we propose a new closed-loop wheel dressing technique for grinding wheel truing that addresses the efficient correction of eccentric wheel rotation and the nonuniformity in the grinding wheel profile. The technique relies on an iterative control algorithm for the ELID power supply. An inductive sensor is used to measure the wheel profile based on the gap between the sensor head and wheel edge, and this is used as the feedback signal to control the pulse width of the power supply. We discuss the detailed mathematical design of the control algorithm and provide simulation results that were confirmed experimentally.

해양환경용 알루미늄 합금의 플라즈마 전해 산화 시 표면 특성에 관한 불화칼륨(KF)의 영향 (Influences of Potassium Fluoride (KF) Addition on the Surface Characteristics in Plasma Electrolytic Oxidation of Marine Grade Al Alloy)

  • 이정형;김성종
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.280-285
    • /
    • 2016
  • In this study, we investigated the influences of potassium fluoride(KF) addition on the surface characteristics of plasma electrolytic oxidation(PEO) coating produced on Al alloy. The PEO of marine grade Al alloy(5083 grade) was conducted in KOH 1g/L solution adding different concentrations of KF(0, 1 and 2 g/L) under a galvanostatic regime. With KF addition, unusual behavior was observed on the voltage-time characteristic curves, which can be characterized by the following process: (i) initial rapid increase in voltage (ii) a short plateau after 1st breakdown (iii) gradual increase in voltage (iv) intermittent fluctuation of voltage after 2nd breakdown. The SEM observation revealed irregular surface morphology with KF addition, as compared with one formed without KF addition, which had a reticulate structure. The XRD analysis detected the formation of aluminium hydroxide fluoride hydrate($H_{4.76}Al_2F_{3.24}O_{3.76}$) on surface grown by PEO process with KF. Particularly, at very early stage of the process (~ 120 s), thin film was formed having nanoporous structure, and F element was confirmed on surface by EDS analysis. The thickness and surface roughness of the coating increased with increasing KF concentration. As a result, KF addition was found to be less beneficial influences on PEO of marine grade Al alloy, and therefore needs further research to improve its capability.

PEO 전류밀도 조건에 따른 알루미늄도금 강재상 산화코팅막의 특성 (Characteristics of Coating Films on Hot-Dipped Aluminized Steel Formed by Plasma Electrolytic Oxidation Process at Different Current Densities)

  • 최인혜;이훈성;이명훈
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.366-372
    • /
    • 2017
  • Plasma electrolytic oxidation(PEO) has attracted attention as a surface treatment which has high wear resistance and corrosion resistance. PEO is generally considered as cost-effective, environmentally friendly and superior in terms of coating performance. Most of studies about the PEO processes have been applied to light metals such as Al and Mg. Because the strength of Al and Mg is weaker than that of steel, there is a limit to the application. In this study, PEO process was used to form oxide coatings on Hot dipped aluminized(HDA) steel and the characteristics of the coating film according to the PEO current density were studied. The morphology was observed by SEM and component was analyzed by using EDS. The corrosion behaviors of PEO coating films were estimated by exposing salt spray test at 5 wt.% NaCl solution and measuring polarization curves in deaerated 3 wt.% NaCl solution. With the increase of PEO process current density, the pore size of the coating surface and the thickness of coating increased. It was confirmed that no Fe component was present on the coating surface. PEO coating films obviously showed good corrosion resistance compared with HDA. It is considered that the PEO coating acts as a barrier to protect the base material from external factors causing corrosion.

플라즈마 전해 산화 공정을 이용한 고 실리콘 알루미늄 합금의 표면 산화막 형성 (Surface Modification of High Si Content Al Alloy by Plasma Electrolytic Oxidation)

  • 김용민;황덕영;이철원;유봉영;신동혁
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.49-56
    • /
    • 2010
  • This study investigated how the surface of Al-12wt.%Si alloy modified by the plasma electrolytic oxidation process (PEO). The PEO process was performed in an electrolyte with sodium hexametaphsphate as a conducting salt, and the effect of ammonium metavanadate on variations in the morphology of electrochemically generated oxide layers on the alloy surface was investigated. It is difficult to form a uniform passive oxide layer on Al alloys with a high Si content due to the differences in the oxidation behavior of the silicon-rich phase and the aluminum-rich phase. The oxide layer covered the entire surface of the Al-12WT.%Si alloy uniformly when ammonium metavanadate was added to the electrolyte. The oxide layer was confirmed as a mixture of $V_2O_3$ and $V_2O_5$ by XPS analysis. In addition, the oxide layer obtained by the PEO process with ammonium metavanadate exhibited a black color. Application of this surface modification method is expected to solve the problem of the lack of uniformity in the coloring of oxide layeres caused by different oxidation behaviors during a surface treatment.

리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동 (Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt)

  • 조수행;홍순석;강대승;박병흥;허진목;이한수
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

Thermodynamic Calculations on the Chemical Behavior of SrO During Electrolytic Oxide Reduction

  • Jeon, Min Ku;Kim, Sung-Wook;Lee, Sang-Kwon;Choi, Eun-Young
    • 방사성폐기물학회지
    • /
    • 제18권3호
    • /
    • pp.415-420
    • /
    • 2020
  • Strontium is known as a salt-soluble element during the electrolytic oxide reduction (EOR) process. The chemical behavior of SrO during EOR was investigated via thermodynamic calculations to provide quantitative data on the chemical status of Sr. To achieve this, thermodynamic calculations were conducted using HSC chemistry software for various EOR conditions. It was revealed that SrO reacts with LiCl salt to produce SrCl2, even in the presence of Li2O, and that the ratio of SrCl2 depends on the initial concentration of Li2O dissolved in LiCl. It was found that SrO reacts with Li to produce Sr during EOR and that the reduced Sr reacts with LiCl salt to produce SrCl2. As a result, the proportions of metallic forms were lower in Sr than in La and Nd under various EOR conditions. The thermodynamic calculations indicated that the three chemical forms of SrO, SrCl2, and Sr co-exist in the EOR system under an equilibrium with Li, Li2O, and LiCl.

스탬핑 리드프레임의 버와 잔류응력 제거를 위한 전해연마의 적용 (The Application of Electropolishing for Removing Burrs and Residual Stress of Stamping Leadframe)

  • 신영의;김헌희;김경섭;코조후지모토;김종민
    • 마이크로전자및패키징학회지
    • /
    • 제8권3호
    • /
    • pp.19-24
    • /
    • 2001
  • 반도체 패키지에 사용되는 주요 재료인 리드프레임은 반도체 제품의 소형화, 박형화, 고집적 화에 대응하기 위해서 리드 및 피치의 미세화가 요구되며 제조 과정에서 발생되는 버(burr)의 제거와 잔류응력 제거에 대한 노력이 필요하다. 본 논문은 리드프레임의 제작 시 스탬핑 공정 중에 발생하는 버와 잔류응력을 제거하기 위해 전해연마를 적용하였다. 전해연마를 적용한 리드프레임은 표면의 버 등이 제거되었으며, 잔류음력은 실험에 사용된 전해액의 종류에 따라 차이가 있으나, 과염소산계의 경우에는 잔류응력을 23%제거하여 리드프레임의 신뢰성을 높일 수 있었다.

  • PDF

국산동판을 사용한 리드프레임 도금기술에 관한 연구 (Electroplating on the Lead Frames Fabricated from Domestic Copper Plate)

  • 장현구;이대승
    • 한국표면공학회지
    • /
    • 제19권3호
    • /
    • pp.92-108
    • /
    • 1986
  • An electroplating on the lead frame fabricated from domestic copper plate was studied experimentally. In this study, nickel was plated on the thin copper lead frame and silver layer was coated on the nickel film in the cyanide electrolyte. The effect of process variables such as current density, plating time, coating thickness and flow rate of electrolytic solution on the properties of coating was investigated. Some samples on each step were fabricated during electroplating. The results obtained from polarization measurement, observation of SEM photograph, adhesion test of coating and microhardness test are as follows. On silver plating, polarization resistance of potentiostatic cathodic polarization curve is reduced as the flow rate of Ag electrolytic solution increases. And above resistance is also reduced when the minor chemicals of sodium cyanide and sodium carbonate are added in potassium silver cyanide bath. The reduced polarization resistance makes silver deposition on the cathode easy. An increase in the current density and the coating thickness causes the particle size of deposit to coarsen, and consequently the Knoop microhardness of the coating decreases. On selective plating an increase in the flow rate of plating solution lead to do high speed plating with high current density. In this case, the surface morphology of deposit is of fine microstructure with high Knoop hardness. An increasing trend of the adhesion of coating was shown with increasing the current density and flow rate of electrolytic solution.

  • PDF