• Title/Summary/Keyword: Electrolytic oxidation water

Search Result 23, Processing Time 0.018 seconds

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Decomposition of Toxic Chemicals in Microemulsion by Electrolytic Oxidation Method (마이크로 에멀젼 상태에서 전기분해법을 이용한 독성물질 분해 연구)

  • Shim, Sung-Hyun;Chun, Byoung-Chul;Chung, Yong-Chan
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.218-223
    • /
    • 2008
  • Decomposition of reactive organic compound dispersed in microemulsion media by hydroxide ions and proton ions generated during electrolysis was tried and the half-lifes for decomposition were compared. Absorbance of p-nitrophenoxide produced from the decomposition of p-nitrophenylacetate (PNPA) was followed to find the rate of decomposition. The applied voltage, temperature, and the amount of substrate were changed to see the effects on the decomposition rate. The advantages of electrolysis in microemulsion system were the high solubilizing capacity of substrate, easy control of decomposition rate, low operation cost, no need for any addition of chemicals, and no byproducts. The mechanism of decomposition and the application to water purification were discussed.

  • PDF

A Study on the Corrosivity according to Soil Characteristics and Electrolytic Protection for the Materials of Fuel Gas Pipe (토양 특성 및 전기방식에 따른 연료 가스용 강관의 부식 차이에 관한 연구)

  • Yim, Sang-Sik;Kim, Ji-sun;Ryu, Young-don;Lee, Jin-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.16-22
    • /
    • 2016
  • Coating pipe(PLP) has been generally used in buried site for protecting the corrosion. To prevent the damage by occurring the defect, other construction or execution works, an anti-oxidation environment was forcibly made by using protective potential. Coating and protective potential are applied simultaneously, but corrosion rate or defects are not easy to observe because soil composition has many uncertainty. Also, defect of coating pipe can not be directly observed. A corrosion coupon can easily measure a corrosion rate directly. The corrosion rate was measured with 6 scenarios using corrosion coupon during about 1 year(6 scenarios are based on soil type and protective potential or not in this research. Resultingly, the corrosion coupon has not occurred in the case of protected by potential current, but corrosion has occurred in a non-protected site. The corrosion rate was measured at least in the clay, and the propensity of corrosion rate was similar in other soil(sand and loams). The local corrosion has occurred in the clay because of high water content. On the other hand, general corrosion was occurred in sand and loams. Commonly, sand is not to corrosive soil. Although, corrosion occurred in sand can be estimated by chemical component and valid with chemical analysis report.