• Title/Summary/Keyword: Electrolytic cell

Search Result 128, Processing Time 0.029 seconds

Concept research of fuel cell system for the UUV (무인잠수정용 연료전지 시스템 개념 연구)

  • Kim, Hyeong-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.751-760
    • /
    • 2014
  • The unmanned underwater vehicle(UUV) requires the highly dense energy source because of its limited space. Especially, for the UUV designed for long-term operation, it should be reviewed first whether it is possible to install the energy source against required total power. Therefore, this study identifies whether it is possible to install the energy source for the energy requirement of the UUV. And fuel and oxidizer requirement for the fuel cell system are calculated to determine its location and layout inside of the vehicle. Finally, we design the closed type 1kW polymer-electrolytic fuel cell system and check the applicability to underwater operations with UUV.

Recovery of Heavy-Metallic Components from a Waste Electro-polishing Solution of 316L Steel by the Solar Cell Electricity (태양전지 전력을 이용한 316L강의 전해연마 폐액 중 중금속 성분의 회수)

  • Kim, Ki-Ho;Jang, Jung-Mok
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.53-57
    • /
    • 2009
  • Recovery of heavy-metallic component from a waste solution of factory was undertaken by the solar cell electricity. The solution was obtained from an electrolytic etching process of 316L stainless steel. The electrolysis of the solution for recovery of heavy metallic components was made with platinum plated titanium mesh anode and copper plate cathode. Analysis for the solution and electro-winned materials were made by EDS, XRD and SEM. Iron, chromium, and sulfur components were recovered on the cathode from the solution. Result of EDS analysis for the electro-winned materials revealed that some metal oxide were contained in the recovered material. The recovered materials were expected to have metallic form only by the electrolysis, but metal compounds were contained because of weak solar cell power. Nickel and manganese component in the solution doesn't recovered by this electrolysis process, but they made a sludge with phosphoric acid in the solution.

A High Efficiency Electrolytic Cell by Superposing Pulsed Corona Discharge in Water (수중 펄스코로나 방전을 중첩한 고효율 강전해수 발생장치)

  • 이재용;김진규;정성진;박승록;문재덕
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.2
    • /
    • pp.79-85
    • /
    • 2001
  • A conventional electrolyzing cell has been made by an ion exchange membrane inbetween parallel plate electrodes. A low dc voltage is applied to the electrodes for electrolyzing and the efficiency is remained in low. in this study, a novel electrolyzing cell with a pair of slit-type third electrodes installed inbetween parallel plate electrodes has been proposed and investigated experimentally. And pulse power wa supplied to between each electrodes. This slit type of third electrodes can concentrate the strong electric fields at the every its edges to accelerate the electrolyzing powers, and to generate oxygen bubble discharges for generating oxidants. And moreover the slits eliminate the space charge limiting action and the temperature of the water by leaking out through the slits from electrolyzing region to outside of the main electrode region. As a result, it was found that a strong electorzed water of pH 2.8 and pH 10.5 and oxidants dissolved water of 1 [ppm] in acidic water were obtained with a tap water fed at the electric current of 2 [A], which however were several times higher oxidant and ion concentration quantity compared with the conventional cell.

  • PDF

The Research of Ni/Cu Contact Using Light-induced Plating for Cryatalline Silicom Solar Cells (결정질 실리콘 태양전지에 적용될 Light-induced plating을 이용한 Ni/Cu 전극에 관한 연구)

  • Kim, Min-Jeong;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.350-355
    • /
    • 2009
  • The crysralline silicon solar cell where the solar cell market grows rapidly is occupying of about 85% or more high efficiency and low cost endeavors many crystalline solar cells. The fabricaion process of high efficiency crystalline silicon solar cells necessitate complicated fabrication processes and Ti/Pd/AG contact, This metal contacts have only been used in limited areas in spite of their good srability and low contact resistance because of expensive materials and process. Commercial solar cells with screen-printed solar cells formed by using Ag paste suffer from loe fill factor and high contact resistance and low aspect ratio. Ni and Cu metal contacts have been formed by using electroless plating and light-induced electro plating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposit the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 16.446 % on 0.2~0.6${\Omega}$ cm, $20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

The Research of Solar Cells Applying Ni/Cu/Ag Contact for Low Cost & High Efficiency (태양전지의 저가격.고효율화를 위한 Ni/Cu/Ag 전극에 관한 연구)

  • Cho, Kyeong-Yeon;Lee, Ji-Hun;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.444-445
    • /
    • 2009
  • The metallic contact system of silicon solar cell must have several properties, such as low contact resistance, easy application and good adhesion. Ni is shown to be a suitable barrier to Cu diffusion as well as desirable contact metal to silicon. Nickel monosilicide(NiSi) has been suggested as a suitable silicide due to its lower resistivity, lower sintering temperature and lower layer stress than $TiSi_2$. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposit the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 16.446 % on $0.2\sim0.6\;{\Omega}{\cdot}cm$, $20\;\times\;20\;mm^2$, CZ(Czochralski) wafer.

  • PDF

Fabrication of Flow Cell Using Carbon Fiber and Electrochemical Decomposition Characteristics for Organic Dyes (탄소섬유전극을 이용한 흐름형 전기분해조 제작 및 유기염료의 전기화학적 분해 연구)

  • Park, Deog-Su
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1371-1377
    • /
    • 2012
  • The simulated dyes solution containing Basic Red 46(BR 46), Yellow 21(Y 21), and Maxilon Blue 30(MB 30) were electrochemically oxidized using carbon fiber as an anode. The electrolyses were performed in a electrolytic flow cell constructed by Vycor glass tube. The carbon fiber was positioned in the inside of Vycor glass tube and platinum wire coiled around outside of tube as a cathode. Several operating variables, such as current, time, pH and flow rate of solution were studied. Increasing current density would lead to a corresponding increase in the dye removal efficiency 99.2 % at a 200 mA. The electrolyses time could also improve and removal efficiency was about 99 % after 1.5 hours of electrolyses. The removal efficiency was increased with the increase of flow rate of solution and optimum flow rate was 5 mL/min. THe pHs of solution affect the removal efficiency. The removal efficiency was decreased with the increase of pH of solution and optimum pH was 5.05 (0.1 M $KNO_3$).

Preparation of Low-cost and Flexible Metal Mesh Electrode Used in the Hybrid Solar Cell by Simple Electrochemical Depositon (전기화학적 전착에 의한 태양전지용 저가 유연 금속 메쉬 제작)

  • Lee, Ju-Yeol;Lee, Sang-Yeol;Lee, Ju-Yeong;Kim, Man
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.123.1-123.1
    • /
    • 2017
  • Hybrid solar cells have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible and transparent devices. It is critical to fabricate individual layer composed of organic and inorganic materials in the hybrid solar cell at low cost. Therefore, it is required to manufacture cheaply and enhance the photon-to-electricity conversion efficiency of each layer in the flexible solar cell industry. In this research, we fabricated pure Cu metal mesh electrode prepared by using electroplating and/or electroless plating on the Ni mold which was manufacture through photolithography, electroforming, and polishing process. Copper mesh was formed on the surface of nickel metal working master when pulsed electrolytic copper deposition were performed at various plating parameters such as plating time, current density, and so on. After electrodeposition at 2ASD for 5~30seconds, the line/pitch/thickness of copper mesh sheet was $1.8{\sim}2.0/298/0.5{\mu}m$.

  • PDF

The Comparative Study of Different Membranes for Electrolytic Cell for the Hydrogen Peroxide Generation (과산화수소 발생을 위한 전해셀용 양성자 교환 막의 비교)

  • You, Sun-Kyung;Kim, Han-Joo;Kim, Tae-Il;Tsurtsumia, Gigla;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.235-238
    • /
    • 2007
  • There is great interest in the applicability of generated hydrogen peroxide to a variety of industrial processes, usually involving oxidation of organics. Hydrogen peroxide is now employed for the bleaching as well as mechanical and chemical treatment in the pulp and paper industries. It addition, it is considered as an agent to displace the traditional alkaline treatments with chlorine-based chemicals. This paper reports a comparative study of $H_2O_2$ electogeneration on gas-diffusion electrode in divided cell with several $Nafion^{(R)}$ proton-exchange membranes, Russian cation-exchange membrane MK-40 and SPEEK membrane. The influence of different PEMs on electro-chemical cell voltage, current efficiency and energy consumption of hydrogen peroxide generation has been studied.

Bone-like Apatite Formation on Ultrafine-Structure in Modified Electrolytic Solution

  • Jang, Jae-Myung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.155-155
    • /
    • 2017
  • Surface modifications are commonly utilized to adjust the properties of the titanium and its alloy surface to the specific needs of the medical applications, but there are disadvantages such as poor osteoconductive properties and low adhesion of bone cell to implant surface. In order to improve these disadvantages, changes in surface properties have an important effect on osseointegration during implantation. In this paper we applied new technological method for improving a unique surface modification using the characteristic of an electrolytic Solution. Thus, in the electrolyte containing NaF in Na2SO4, TiO2 nanoporous was uniformly formed, and HAp nanoparticles were electrodeposited around the TiO2 nanopores, but in the electrolyte containing NH4F in (NH4)H2PO4, the coarse protrusions including HAp nano particles were regularly deposited onto the TiO2 barrier layer. The surface characteristics and the distributed elements and have been investigated by EDS analysis, and ultra-fine structure of surface are carried out using FE-SEM. To investigate the behavior of the anion, the analysis of chemical states was performed by XPS, and the narrow spectrums for Ti2P, Ca 2p, and P 2p seems to be almost similar depending on the characteristics of the electrolyte solution respectively. In addition, Ca 2p spectrum could be resolved into two peaks for Ca 2p3/2 and 2p1/2 at 347.4 and 351.3 eV, which are related to hydroxyapatite. And, the P peak can also be deconvoluted into two peaks for P1/2 and P3/2 levels with binding energy 134.2 and 133.4 eV, respectively. From the result of soaking test, the apatite morphologys were well-formed onto the modified surface according to the different conditions.

  • PDF

Corrosion Evaluation for Advanced Fuel Cycle Facilities (선진 핵연료주기 시설(AFC)의 부식건전성 조사, 분석)

  • Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.213-217
    • /
    • 2012
  • The amount of spent fuel from nuclear power plants has been increasing. An effective management plan of the spent fuel becomes a critical issue, because the storage capacity of each plant will reach its storage limit in a few years. The volume of high toxic spent fuel can be reduced through a fuel processing. Advanced Fuel Cycle (AFC) system is considered to be one of the options to reduce the toxicity and volume of the spent fuel. It is necessary to set up a test facility to demonstrate the feasibility of the process at the engineering scale. The objective of the work is a development of the safety evaluation technology for the AFC system. The evaluation technology of the AFC structural integrity and processes were surveyed and reviewed. Key evaluation parameters for the main processes such as electrolytic reduction, electrorefining, and electrowinning were obtained. The survey results may be used for the establishment of the AFC regulatory licensing procedure. The establishment of the licensing criteria minimizes the trials and errors of the AFC facility design. Issues taken from the survey on the regulatory procedure and design safety features for the AFC facility provide a chance to resolve potential issues in advance.