• Title/Summary/Keyword: Electrolytic cell

Search Result 128, Processing Time 0.031 seconds

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

A Study on Electrolysis of Heavy Water and Interaction of Hydrogen with Lattice Defects in Palladium Electrodes (팔라디움전극에서 중수소의 전기분해와 수소와 격자결함의 반응에 관한 연구)

  • Ko, Won-Il;Yoon, Young-Ku;Park, Yong-Ki
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.141-153
    • /
    • 1992
  • Excess tritium analysis was peformed to verify whether or not cold fusion occurs during electrolysis of heavy water in the current density range of 83~600 mA/$\textrm{cm}^2$ for a period of 24 ~ 48 hours with use of palladium electrodes of seven different processing treatments and geometries. The extent of recombination of D$_2$ and $O_2$gases in the electrolytic cell was measured for the calculation of accurate enthaplpy values. The behavior and interaction of hydrogen atoms with defects in Pd electrodes were examined using the Sieverts gas charging and the positron annihilation(PA) method. Slight enrichment of tritium observed was attributed to electrolytic enrichment but not to the formation of a by-product of cold fusion. The extent of recombination of D$_2$and $O_2$gases was 32%. Hence the excess heat measured during the electrolysis was considered to be due to the exothermic reaction of recombination but not to nuclear fusion. Lifetime results from the PA measurements on the Pd electrodes indicated that hydrogen atoms could be trapped at dislocations and vacancies in the electrodes and that dislocations were slightly more preferred sites than vacancies. It was also inferred from R parameters that the formation of hydrides was accompanied by generation of mostly dislocations. Doppler broadening results of the Pd electrodes indicated that lattiec defect sites where positrons were trapped first increased and then decreased, and this cycle was repeated as electrolysis continued. It can be inferred from PA measurements on the cold-rolled Pd and the isochronally annealed Pd hydride specimens that microvoid-type defects existed in the hydrogen-charged electrode specimen.

  • PDF

Preparation and Characterization of a Sn-Anode Fabricated by Organic-Electroplating for Rechargeable Thin-Film Batteries (유기용매 전해조를 이용한 리튬이차박막전지용 Sn 음극의 제조)

  • Kim, Dong-Hun;Doh, Chil-Hoon;Lee, Jeong-Hoon;Lee, Duck-Jun;Ha, Kyeong-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.284-288
    • /
    • 2008
  • Sn-thin film as high capacitive anode for thin film lithium-ion battery was prepared by organic-electrolyte electroplating using Sn(II) acetate. Electrolytic solution including $Li^+$ and $Sn^{2+}$ had 3 reduction peaks at cyclic voltammogram. Current peak at $2.0{\sim}2.5\;V$ region correspond to the electroplating of Sn on Ni substrate. This potential value is lower than 2.91 V vs. $Li^+/Li^{\circ}$, of the standard reduction potential of $Sn^{2+}$ under aqueous media. It is the result of high overpotential caused by high resistive organic electrolytic solution and low $Sn^{2+}$ concentration. Physical and electrochemical properties were evaluated using by XRD, FE-SEM, cyclic voltammogram and galvanostatic charge-discharge test. Crystallinity of electroplated Sn-anode on a Ni substrate could be increased through heat treatment at $150^{\circ}C$ for 2 h. Cyclic voltammogram shows reversible electrochemical reaction of reduction(alloying) and oxidation(de-alloying) at 0.25 V and 0.75 V, respectively. Thickness of Sn-thin film, which was calculated based on electrochemical capacity, was $7.35{\mu}m$. And reversible capacity of this cell was $400{\mu}Ah/cm^2$.

Electrochemical Decomposition Characteristics of Ammonia by the Catalytic Oxide Electrodes (촉매성 산화물 전극에 의한 암모니아의 전기 화학적 분해 특성)

  • Kim, Kwang-Wook;Kim, Young-Jun;Kim, In-Tae;Park, Gun-Ill;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • In order to know the electrochemical decomposition characteristics of ammonia to nitrogen, this work has studied several experimental variables on the electrolytic ammonia decomposition. The effects of pH and chloride ion at $IrO_2$, $RuO_2$, and Pt anodes on the electrolytic decomposition of ammonia were compared, and the existence of membrane equipped in the cell and the changes of the current density, the initial ammonia concentration and so on were investigated on the decomposition. The performances of the electrode were totally in order of $RuO_2{\approx}IrO_2>Pt$ in the both of acid and alkali conditions, and the ammonia decomposition was the highest at a current density of $80mA/cm^2$, over which it decreased, because the adsorption of ammonia on the electrode surface was hindered due to the evolution of oxygen. The ammonia decomposition increased with the concentration of chloride ion in the solution. However, the increase became much dull over 10 g/l of chloride ion. The $RuO_2$ electrode among the tested electrodes generated the most OH radicals which could oxidized the ammonium ion at pH 7.

Efficacy and Safety Evaluation of an Air Sterilizer Equipped With an Electrolytic Salt Catalyst for the Removal of Indoor Microbial Pollutants (염촉매 전기분해 공기살균기의 효능 평가)

  • Sun Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Kyung Il Jung;Gye Rok Jeon;Soon Cheol Ahn
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.500-508
    • /
    • 2024
  • Recently, there has been increasing interest in enhancing the indoor air quality, particularly in response to the growing utilization of public facilities. The focus of this study was on assessing the efficacy and safety of an air sterilizer equipped with electrolytic salt catalysts. To that end, we evaluated the antimicrobial activity of the vapor spraying from the air sterilizer and its cytotoxicity in condensed form on human cell lines (HaCaT, BEAS-2B, and THP-1). Against the test organisms, which comprised five bacterial strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium) and one fungal strain (Candida albicans), the air sterilizer exhibited relatively high antimicrobial activities ranging from 10.89 to 73.98% following 1 and 3 hr of vapor spraying, which were notably time-dependent. Importantly, cytotoxicity assessments on human cells indicated no significant harmful effect even at a 1.0% concentration. Comprehensive safety evaluations included morphological observations, gene expression (Bcl-2, Bax) tests, and FACS analysis of intracellular ROS levels. Consistent with previous cytotoxicity findings, these estimates demonstrated no significant changes, highlighting the air sterilizer's safety and antimicrobial activities. In a simulated 20-hr operation within an indoor environment, the air sterilizer not only showed an 89.4% removal of total bacteria but also a 100.0% removal of Escherichia sp. and fungi. This research outlines the potential of the developed electrolytic salt catalyst air sterilizer to effectively remove indoor microbial pollutants without compromising human safety, underscoring the solution that it offers for improving indoor air quality.

Impedance Parameters of Electrical Double Layer I. A Determination Method of Electrolytic Cell Impedance Parameter on the Platinum Electrode (전기이중층의 임피던스 파라미터 I. 백금전극을 사용한 전해쎌 임피던스 파라미터의 결정방법)

  • Kum-Sho Hwang;Un-Sik Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.273-281
    • /
    • 1986
  • This study is focused on the correct measurement of the equations for the determination of the impedance parameters-the differential capacity of the double layer $C_d$, solution resistance $R_Q$, transfer resitance $R_i$, and adsorption pseudcapacity $C_{\phi}$/ The application of only an imaginary part of complex function of ${\omega}$ at the sinusoidal steady state indicates the following equations of total impedance: at low frequency $|Z_{LF}|=1/{\omega}_1\;C_{\phi}\;{\sqrt{1+{{\omega}_1}^2/{\omega}^2}$, at high frequency $|Z_{HF}|={\omega}_2/({\omega}_1{\omega}_3C{\phi})({\omega}^2+{{\omega}_2}^2)\;{\sqrt{{({\omega}^2+{\omega}_2{\omega}_3)}^2+{({\omega}_2{\omega}-{\omega_3{\omega})^2}}$. The values of the total impedance of cell, phase angle, and cell current that are necessary for the calculations of impedance parameters were experimentally measured from 200 to 6000Hz for the following supporting electrolytes, 0.5M $Na_2SO_4$, 1M NaCl, 19.373% sea water, 1M HCl, 1M $KNO_3$ and for $10^{-2}M$ KI and 60mM DBNA (Di-iso-Butylnitrosoamine) in these supporting electrolytes. The derived equations in this study shows that the values of impedance parameters of $C_d,\;C_{\phi},\;R_i\;and\;R_Q\;are\;15{\sim}40\;{\mu}F/cm^2,\;162{\sim}758\;{\mu}F/cm^2\;11.5{\sim}57.6\;ohm{\cdot}cm^2\;and\;0.5{\times}10^{-2}{\sim}4.1{\times}10^{-2}\;ohm{\cdot}cm^2$ respectively.

  • PDF

Cleaning and Storage Effect of Electrolyzed Water Manufactured by Various Electrolytic Diaphragm (격막 방식에 따라 제조한 전해수의 세척 및 보관 효과)

  • 김명호;정진웅;조영제
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.160-169
    • /
    • 2004
  • This study was carried out to investigate the efficacy of electrolyzed water manufactured with or without diaphragm on sterilization and preservation of cut-celery and shelled raw oyster. In cut-celery, total viable cell count and coliform group in the treatment of electrolyzed water were decreased to about 1/200∼1/1,000 level and about 1/100 level comparing non-treated ones. But moisture content, pH, hardness, vitamin C and residual chlorine content were showed a little difference among treatments up to 10 days at 10$^{\circ}C$. L and a color values were gradually increased in all treatments, and color differences($\Delta$E) were remarkable between treatment and untreatment sample. In overall acceptability, cut-celery treated with electrolyzed water showed somewhat higher score than that of other ones treated with tap water and 100 ppm NaClO solution until 5 days of storage. After 48 hours of storage, it was showed that VBN, total viable cell count and coliform count of shelled raw oyster treated with electrolyzed alkali water produced by non-diaphragm system are lower by about 3 mg%, 1∼2 log cycle and 2 log cycle respectively than that of ones treated with sea water. Total viable cell count of shelled raw oyster just after treatment was lower by about 1 log cycle than that of ones treated with sea water, and any significant increment was not found after 24∼48 hours of storage.

Sulfonated poly(arylene ether copolymer)-g-sulfonated Polystyrene Membrane Prepared Via E-beam Irradiation and Their Saline Water Electrolysis Application (전자빔조사를 이용한 술폰화 폴리아릴렌 에테르 술폰-g-술폰화 폴리스틸렌 분리막 제조 및 염수전기분해 특성평가)

  • Cha, Woo Ju;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.458-462
    • /
    • 2016
  • Saline water electrolysis, known as chlor-alkali (CA) membrane process, is an electrochemical process to generate valued chemicals such as chlorine, hydrogen and sodium hydroxide with high purities higher than 99%, using an electrolytic cell composed of cation exchange membrane, anode and cathode. It is necessary to reduce energy consumption per a unit chemical production. This issue can be solved by decreasing intrinsic resistance of the membrane and the electrodes and/or by reducing their interfacial resistance. In this study, the electron radiation grafting of a $Na^+$ ion-selective polymer was conducted onto a hydrocarbon sulfonated ionomer membrane with high chemical resistance. This approach was effective in improving electrochemical efficiency via the synergistic effect of relatively fast $Na^+$ ion conduction and reduced interfacial resistance.

Input Ripple Current Formula Analysis of Multi-Stage Interleaved Boost Converter (다단 인터리브드 부스트 컨버터의 입력리플전류 수식 분석)

  • Jung, Yong-Chae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.865-871
    • /
    • 2011
  • DC-DC converter commonly used in photovoltaic systems or fuel cell systems is a boost converter. Among several types of boost converter, the interleaved boost converter with small input and output current ripples is widely used in recent years. Because of small input and output current ripples, the circuit can reduce the size of the input and output capacitors. Thus, instead of conventional electrolytic capacitor, the film capacitor with high reliability can be used and this is the life and reliability of the entire system can be improved. In this paper, the input/output current ripple formulas of the multi-stage interleaved boost converter are derived, and the characteristics in accordance with duty are found out. In order to verify the above mentioned contents, the derived results will make a comparison with the calculated values by using PSIM tool.

Electrochemical Behaviors of N'-phenyl-N-(2-chloroethyl)-N-nitrosourea Analogous and Synthesis of N-aminourea (N'-phenyl-N-(2-chloroethyl)-N-nitrosourea 유사체의 전기화학적 거동 및 N-aminourea의 합성)

  • Won, Mi-Sook;Kim, Jeong-Gyun;Sim, Yoon-Bo
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.707-712
    • /
    • 1991
  • N'-phenyl-N-(2-chloroethyl)-N-aminourea has been prepared from N'-phenyl-N-(2-chloroethyl)-N-nitrosourea by means of the electrochemical reduction with the mercury pool electrolytic cell. In order to find out the optimum condition of the reaction, the voltammetric behaviors for N'-aryl-N-(2-chloroethyl)-N-nitrosourea derivatives have been investigated by the cyclic voltammetry and polarography. The peak potentials was shifted to the negative direction as the pH value of the solution decrease. The substituent effects of phenyl ring on the peak potential were not observed in this case. (5:3) EtOH/4 N-HCl mixed solution was employed for the electrolysis. The applied potential was -0.7 V vs. Ag/AgCl/4 N-HCl electrode. The number of electrons participated to the reduction process was 4, respectively. The product was identified by FT-IR, NMR, mass and/or elemental analysis data.

  • PDF