• Title/Summary/Keyword: Electrolytes

Search Result 1,075, Processing Time 0.025 seconds

The element changes of Electrolytes and Hormones Pre & Post the Performance of Exercises Induces by Environment Temperature (환경온도(環境溫度)에 따른 운동(運動)수행전후 전해질(電解質) 및 호르몬의 성분변화(成分變化))

  • Lee, Jae-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.155-166
    • /
    • 2000
  • In order to elucidate the interrelationship between electrolytes and exercise the investigation was undertaken to determine the electrolyte levels in young males took on varied environmental temperatures ($13^{\circ}C$, $24^{\circ}C$ or $34^{\circ}C$). 10 healthy young males were used for the experiments. Our results showed the following significant changes; 1. The raising of the environmental temperature, the weight reduction were increased due to marked sweating. 2. In the electrolytes of serum, decreased the $K^+$ concentration at $13^{\circ}C$, but increased the $Na^+$ or $Cl^-$ concentration at $24^{\circ}C$, and increased the $Na^+$ or $Cl^-$, or $Mg^{+}^{+}$ concentrations at $34^{\circ}C$. 3. The raising of environmental temperature appear to be increased PRA,Ang I, Ang II and ALD levels, whereas no changed ADH level. 4. Serum levels of PRA, Ang I, Ang II and ALD were incresed after exercise, and their increments were incresed paralel ttie incresed environmental temperature. However, there no significant change in ADH, level. In conclusion, exercise induced not only changes of serum electrolytes levels such as $Na^+$, $Cl^-$, $K^+$, $Mg^{+}^{+}$, but also serum hormonal changes such as PRA, Ang I, Ang II, ALD. However, ADH level was not changed significantly, These changes were more prominent in exercise at hot temperature than in lower temperature.

  • PDF

Effects of the Transition Metal Oxides Substituted for Mg on the Electrical Conductivity of La0.8Sr0.2Ga0.8Mg0.2O3-δ -based Electrolytes (Mg에 치환된 전이금속이 La0.8Sr0.2Ga0.8Mg0.2O3-δ 고체전해질의 전기전도도에 미치는 영향)

  • Park, Sang-Hyoun;Yoo, Kwang-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.330-337
    • /
    • 2005
  • La/sub 0.8/Sr/sub 0.2/Ga/sub 0.8/Mg/sub 0.2/O/sub 3-δ/-based solid electrolytes in which Mg site was partially substituted by Fe, Co or Ni (0.05, 0.1, 0.15 at.%) were fabricated by conventional solid-state reaction and their sintered densities were above 94% of theoretical density. X-ray diffraction analysis and microstructure observation for the sintered specimens were performed. The ac complex impedance were measured at 400。C to l000。C in air and fitted with a Solatron ZView program. The electrical conductivity of La/sub 0.8/Sr/sub 0.2/Ga/sub 0.8/Mg/sub 0.2/O/sub 3-δ/-based solid electrolytes substituted by Fe, Co or Ni was higher than that of pure La/sub 0.8/Sr/sub 0.2/Ga/sub 0.8/Mg/sub 0.2/O/sub 3-δ/. The electrical conductivity of La/sub 0.8/Sr/sub 0.2/Ga/sub 0.8/Mg/sub 0.05/Ni/sub 0.15/O/sub 3-δ/ electrolyte was 3.4×10/sup -2/ Scm/sup -1/ at 800。C and the highest value of the whole electrolytes.

Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Organic Electrolytes (페놀계 활성탄소섬유 전극과 유기성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성)

  • An, Kay Hyeok;Kim, Jong Huy;Shin, Kyung Hee;Noh, Kun Ae;Kim, Tae Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.822-827
    • /
    • 1999
  • The specific capacitance characteristics which were of the electric double layer capacitors(ELDC) made of phenol based activated carbon fiber(ACF) electrodes and organic electrolytes has been investigated with respect to different specific surface area of electrodes and different kinds of organic electrolytes. Throughout charge-discharge cell tests, it has been found that larger surface area and larger pore diameter of electrodes contribute to increase the specific capacitance. Binary mixture of organic solvent with propylene cabonate(PC) and tetrahydrofuran(THF) for 1 M-$LiClO_4$ electrolyte has a higher specific capacitance than single solvent of PC or mixed solvent with PC and diethyl cabonate(DEC). Also, even though 1 M-tetraethylamonium perchlorate(TEAPC) of organic electrolyte shows higher specific capacitance, it has longer charge time because of its lower ion mobility.

  • PDF

Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Aqueous Electrolytes (페놀계 활성탄소섬유 전극과 수용성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성)

  • Kim, Jong Huy;An, Kay Hyeok;Shin, Kyung Hee;Ryoo, Min Woong;Kim, Dong Kuk
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.814-821
    • /
    • 1999
  • The specific capacitance characteristics of the electric double layer capacitors(ELDC) which were made of phenol based activated carbon fiber(ACF) electrodes. Also the effect of aqueous electrolytes on the cell performance has been investigated with respect to different specific surface areas of electrodes and different kinds of aqueous electrolytes. It has been shown that larger surface area and pore size, higher conductivity of electrodes, and higher ion mobility of electrolytes have better specific capacitances. It has been found that heat treatment at $1200^{\circ}C$ and $CO_2$ post-activation at $900^{\circ}C$ of the electrode are effective to improve the specific capacitance over 145F/g and 165F/g, respectively. The EDLC showed high efficiency and long cycle life over 30000 cycles.

  • PDF

Investigation of a Pseudo Capacitor with Polyacrylonitrile based Gel Polymer Electrolyte

  • Harankahawa, Neminda;Weerasinghe, Sandaranghe;Vidanapathirana, Kamal;Perera, Kumudu
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • Pseudo capacitors belong to one group of super capacitors which are consisted with non carbon based electrodes. As such, conducting polymers and metal oxide materials have been employed for pseudo capacitors. Conducting polymer based pseudo capacitors have received a great attention due to their interesting features such as flexibility, low cost and ease of synthesis. Much work has been done using liquid electrolytes for those pseudo capacitors but has undergone various drawbacks. It has now been realized the use of solid polymer electrolytes as an alternative. Among them gel polymer electrolytes (GPEs) are in a key place due to their high ambient temperature conductivities as well as suitable mechanical properties. In this study, composition of a polyacrylonitrile (PAN) based GPE was optimized and it was employed as the electrolyte in a pseudo capacitor having polypyrrole (PPy) electrodes. GPE was prepared using ethylene carbonate (EC), propylene carbonate (PC), sodium thiocyanate (NaSCN) and PAN as starting materials. The maximum room temperature conductivity of the GPE was $1.92{\times}10^{-3}Scm^{-1}$ for the composition 202.5 PAN : 500 EC : 500 PC : 35 NaSCN (by weight). Performance of the pseudo capacitor was investigated using Cyclic Voltammetry technique, Electrochemical Impedance Spectroscopy (EIS) technique and Continuous Charge Discharge (GCD) test. The single electrode specific capacity (Cs) was found out to be 174.31 F/g using Cyclic Voltammetry technique at the scan rate of 10 mV/s and within the potential window -1.2 V to 1.2 V. The same value obtained using EIS was about 84 F/g. The discharge capacity ($C_d$) was 69.8 F/g. The capacity fade over 1000 cycles was rather a low value of 4%. The results proved the suitability of the pseudo capacitor for improving the performance further.

Ionic Conductivity Change Depending on Thermal History in PEO-LiC$lO_4$ Polymer Electrolytes (PEO-LiC$lO_4$ 고분자 전해질의 열적 이력에 따른 이온 전도성 변화)

  • 최병구
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.455-459
    • /
    • 2004
  • Ionic conductivities of poly(ethylene oxide) (PEO)-based electrolytes are in a considerable inconsistency in many papers, varying more than three orders of magnitude for just same compositions. In PEO-salt-ceramic composite electrolytes, it has been also reported that the conductivity can be variant by almost three orders of magnitude according to thermal treatment and it has been regarded as a consequence of polymer-ceramic particle interaction. In this paper, we present a more systematic study on the change of ionic conductivity for ceramic-free PEO$_{10}$LiClO$_4$ polymer electrolytes, and found that the ionic conductivity can be variant more than hundred times according to thermal history. The slow recrystallization kinetics of PEO polymer is discussed to be responsible for the thermal history effect. Present results reveal that the effect of ceramic filler is not a main cause of the conductivity relaxation phenomenon.n.

Comparison of Arrhenius and VTF Description of Ion Transport Mechanism in the Electrolytes (전해질 이온이동 기작 기술을 위한 아레니우스 모델 및 VTF 모델 비교)

  • Kim, Hyoseop;Koo, Bonhyeop;Lee, Hochun
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.81-89
    • /
    • 2020
  • To understand the performance of the electrochemical device, the analysis of the mechanism of ionic conduction is important. However, due to the ionic interaction in the electrolyte and the complexity of the electrolyte structure, a clear analysis method of the ion conduction mechanism has not been proposed. Instead, a variety of mathematical models have been devised to explain the mechanism of ion conduction, and this review introduces the Arrhenius and Vogel-Tammann-Fulcher (VTF) model. In general, the above two mathematical models are used to describe the temperature dependence of the transport properties of electrolytes such as ionic conductivity, diffusion coefficient, and viscosity, and a suitable model can be determined through the linearity of the graph consisting of the logarithm of the moving property and the reciprocal of the temperature. Currently, many electrolyte studies are evaluating the suitability of the above two models for electrolytes by varying the composition and temperature range, and the ion conduction mechanism analysis and activation energy calculation are in progress. However, since there are no models that can accurately describe the transport properties of electrolytes, new models and improvement of existing models are needed.

A brief review of the bilayer electrolyte strategy to achieve high performance solid oxide fuel cells (고성능 고체산화물 연료전지를 위한 이중층 전해질 전략)

  • Park, Jeong Hwa;Kim, Doyeub;Kim, Kyeong Joon;Bae, Kyung Taek;Lee, Kang Taek
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.184-199
    • /
    • 2020
  • The solid oxide fuel cells (SOFCs) are the one of the most promising energy conversion devices which can directly convert chemical energy into electric power with high efficiency and low emission. The lowering operating temperature below 800 ℃ has been considered as the mostly considerable research and development for commercialization. The major issue is to maintain reasonably high performance of SOFCs at reduced temperatures due to increment of polarization resistance of electrodes and electrolyte. Thus, the alternative materials with high catalytic activities and fast oxygen ion conductivity are required. For recent advances in electrolyte materials and technology, newly designed, highly conductive electrolyte materials and structural engineering of them provide a new path for further reduction in ohmic polarization resistance from electrolytes. Here, a powerful strategy of the bilayer concept with various oxide electrolytes of SOFCs are briefly reviewed. These recent developments also highlight the need for electrolytes with greater conductivity to achieve a high performance, thus providing a useful guidance for the rational design of cell structures for SOFCs. Moreover, cell design, materials compatibility, processing methods, are discussed, along with their role in determining cell performance. Results from state-of-the-art SOFCs are presented, and future prospects are discussed.

Effect of the Inert Ceramic Powder on the Electrical and Mechanical Properties of the Polymer Electrolytes (비활성 세라믹 분말이 고분자 전해질의 전기적, 기계적 특성에 미치는 영향)

  • Kim, Dong-Won;Park, Jung-Ki;Kim, Chang-Jung;No, Kwang-Soo
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.237-244
    • /
    • 1993
  • The characteristics of composite polymer electrolytes obtained by adding a fine ceramic powder($\gamma-{LiAlO}_{2}$) with a diameter of $1{\mu}$m to a poly(ethylene oxide)/lithium trifluoromethane sulfonate (LiC$F_3$S$O_3$) complex are described in terms of morphological and mechanical behavior. The addition of uniformly dispersed ceramic powder greatly improves the electrical and mechanical properties of solid polymer electrolytes at ambient temperature. For the composite polymer electrolytes under this study, the optimum composition of the $\gamma-{LiAIO}_{2}$ in the composite for maximum ionic conductivity was found to be 20 wt%.

  • PDF