• Title/Summary/Keyword: Electrolyte Droplet

Search Result 18, Processing Time 0.019 seconds

Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium (Titanium 양극산화시 TiO2 의 형상 및 특성에 미치는 전해질의 영향)

  • Yeji Choi;Chanyoung Jeong
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2023
  • Titanium alloy (grade-4) is commonly used in industrial and medical applications. To improve its corrosion resistance and biocompatibility for medical use, it is necessary to form a titanium oxide film. In this study, the morphology of the oxide film formed by anodizing Ti-grade 4 using different electrolytes was analyzed. Wetting properties before and after surface modification with SAM coating were also observed. Electrolytes used were categorized as A, B, and C. Electrolyte A consisted of 0.3 M oxalic acid and ethylene glycol. Electrolyte B consisted of 0.1 M NH4F and 0.1 M H2O in ethylene glycol. Electrolyte C consisted of 0.07 M NH4F and 1 M H2O in ethylene glycol. Samples B and C exhibited a porous structure, while sample A formed a thickest oxide film with a droplet-like structure. AFM analysis and contact angle measurements showed that sample A with the highest roughness exhibited the best hydrophilicity. After surface modification with SAM coating, it displayed superior hydrophobicity. Despite having the thickest oxide film, sample A showed the lowest insulation resistance due to its irregular structure. On the other hand, sample C with a thick and regular porous oxide film demonstrated the highest insulation resistance.

Charging of an Ionic Liquid Droplet in a Dielectric Medium (비전도성 매질 내 이온성 액체 액적의 충전 현상)

  • Im, Do Jin
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.354-358
    • /
    • 2014
  • Ionic liquid (IL) is a salt presents in a liquid form at room temperature. Recently, it attracts huge attention due to its possibilities as a clean solvent, electrolyte, and catalyst. In the present work, the charging behavior of six different ILs were investigated using droplet contact charging phenomenon in a dielectric medium. Basically, the charging of an IL droplet can be explained by a perfect conductor theory. However, there were several different features depending on the species of ions of ILs, which requires rigorous molecular level modeling of charge transport through electrochemical reaction of IL. We hope the present results contribute to build up fundamental understanding of electrochemical charge transport of IL.

Experimental and Numerical Assessment of Liquid Water Exhaust Performance of Flow Channels in PEM Fuel Cells (고분자 전해질 연료전지 유로의 수분배출 특성의 실험 및 해석적 평가)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.85-92
    • /
    • 2009
  • Polymer electrolyte membrane (PEM) fuel cells are a promising technology for short-term power generation required in residential and automobile applications. Proper management of water has been found to be essential for improving the performance and durability of PEM fuel cells. This study investigated the liquid water exhaust capabilities of various flow channels having different geometries and surface properties. Three-pass serpentine flow fields were prepared by patterning channels of 1 mm or 2 mm width onto hydrophilic Acrylic plates or hydrophobic Teflon plates, and the behaviors of liquid water in those flow channels were experimentally visualized. Computational fluid dynamics (CFD) simulations were also conducted to quantitatively assess the liquid water exhaust capabilities of flow channels for PEM fuel cells. Numerical results showed that hydrophobic flow channels have better liquid water exhaust capabilities than hydrophilic flow channels. Flow channels with curved corners showed less droplet stagnation than the channels with sharp corners. It was also found that a smaller width is desirable for hydrophobic flow channels while a larger width is desirable for hydrophilic ones. The above results were explained as being due to the different droplet morphologies in hydrophobic and hydrophilic channels.

Droplet Size and Thermal conductivity Measurements of Binary Nanoemulsion (이성분 나노에멀전의 입도 및 열전도도 측정)

  • Cho, Chang-Hwan;Sul, Hea-Youn;Jung, Jung-Yeul;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.815-820
    • /
    • 2009
  • Binary nanoemulsions which are defined as the, oil-droplet suspensions in binary solution ($H_2O$/LiBr), are developed to enhance the heat and mass transfer performance of absorption refrigeration systems. In this study, a novel two-step method is proposed to prepare the stable oil-in-binary solution (O/S) emulsion. Polymer is used as a steric stabilizer to stabilize the oil-droplets in a strong electrolyte ($H_2O$/LiBr). It is found that the thermal conductivity of the binary nanoemulsion is inversely proportional to the emulsion size while the concentrations of oil and $H_2O$/LiBr are less dominant for the thermal conductivity of binary nanoemulsions.

  • PDF

Dynamics of Electrowetting of a Liquid-Liquid Interface in a Cylindrical Tube (원형관내의 액체-액체 계면에 대한 전기습윤 현상의 동적 거동)

  • Kang, Kwan-Hyoung;Chung, Won-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.557-560
    • /
    • 2006
  • The contact angle of a meniscus and a droplet can be controlled by using electrowetting phenomena. We investigated the dynamic aspect of electrowetting for an oil-electrolyte interface formed inside a closed glass tube. A step input voltage is applied and the subsequent motion of the interface is recorded by a high-speed camera. A kind of capillary instability is observed near the three-phase contact line, which could degrade the reliability of device utilizing electrowetting such as electrowetting liquid lens. The dynamics of interface motion for different input voltages and the fluid viscosities are analyzed and discussed based on the experimental results.

  • PDF

Electrodeposition of Some Selective Metals Belonging to Light, Refractory and Noble Metals from Ionic Liquid Electrolytes

  • Dilasari, Bonita;Kwon, Kyung-Jung;Lee, Churl-Kyoung;Kim, Han-Su
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.135-148
    • /
    • 2012
  • Ionic liquids are steadily attracting interests throughout a recent decade and their application is expanding into various fields including electrochemistry due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, wide electrochemical potential window and so on. These features make ionic liquids become an alternative solution for electrodeposition of metals that cannot be electroplated in aqueous electrolytes. In this review, we classify investigated metals into three categories, which are light (Li, Mg), refractory (Ti, Ta) and noble (Pd, Pt, Au) metals, rather than covering the exhaustive list of metals and try to update the recent development in this area. In electrodeposition of light metals, granular fine Li particles were successfully obtained while the passivation of electrodeposited Mg layers is an obstacle to reversible deposition-dissolution process of Mg. In the case of refractory metals, the quality of Ta and Ti deposit particles was effectively improved with addition of LiF and pyrrole, respectively. In noble metal category, EMIM TFSA ionic liquid as an electrolyte for Au electrodeposition was proven to be effective and BMP TFSA ionic liquid developed a smooth Pd deposit. Pt nanoparticle production from ionic liquid droplet in aqueous solution can be cost-effective and display an excellent electrocatalytic activity.

A Study of Localized Corrosion Mechanisms in the Multilayered Coatings by Cathodic Arc Deposition (음극아크증착법으로 합성한 다층박막의 국부부식 기구에 관한 연구)

  • 김호건;안승호;이정호;김정구;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.301-306
    • /
    • 2003
  • Multilayered WC-Ti/suv $1-x/Al_{x}$ N coatings were deposited on AISI D2 steel using cathodic arc deposition (CAD) method. These coatings contain structural defects such as pores or droplets. Thus, the substrate is not completely isolated from the corrosive environment. The growth defects (pores, pinholes) in the coatings are detrimental to corrosion resistance of the coatings used in severe corrosion environments. The localized corrosion behavior of the coatings was studied in deaerated 3.5 wt.% NaCl solution using electrochemical techniques (potentiodynamic polarization test) and surface analyses (GDOES, SEM, AES, TEM). The porosity was calculated from the result of potentiodynamic polarization test of the uncoated and coated specimens. The calculated porosity is higher in the $WC-Ti_{0.6}$ $Al_{0.4}$ N than others, which is closely related to the packing factor. The positive effects of greater packing factor act on inhibiting the passage of the corrosive electrolyte to the substrate and lowering the localized corrosion kinetics. From the electrochemical tests and surface analyses, the major corrosion mechanisms can be classified into two basic categories: localized corrosion and galvanic corrosion.

Prediction for Possibility of the Electric Fire by Tracking Breakdown (트래킹에 의한 전기화재 가능성 예측)

  • Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • Tracking, which is one of main reasons of the electric fire, progresses gradually, and therefore, the possibility of fire caused by tracking can be predicted by analyzing the stage of its progress. This paper is conducted in order to predict possibility of the electric fire caused by the tracking in the simulated electric equipment with load. Non-inductive resistance is used as the load. The tracking is happened in a Polyvinyl-chloride-sheathed flat cord, which is a part of the simulated electric equipment by means of dropping of electrolyte droplet. In order to predict the possibility of electric fire caused by tracking, we detect the whole current waveforms of the simulated electric equipment. The time-energy analysis and probability distribution are used for analysis of the tracking progress from the whole current waveforms. In accordance with the results is used for input date of Neural networks, the neural networks can be predict possibility of the electric fire in the electric equipment by 4 stages.