• 제목/요약/키워드: Electrolyte Droplet

검색결과 18건 처리시간 0.024초

Computational Modelling of Droplet Dynamics Behaviour in Polymer Electrolyte Membrane Fuel Cells: A Review

  • Yong, K.W.;Ganesan, P.B.;Kazi, S.N.;Ramesh, S.;Sandaran, S.C.
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권4호
    • /
    • pp.345-360
    • /
    • 2019
  • Polymer Electrolyte Membrane Fuel Cells (PEMFC) is one of the leading advanced energy conversion technology for the use in transport. It generates water droplets through the catalytic processes and dispenses the water through the gas-flowed microchannels. The droplets in the dispensing microchannel experience g-forces from different directions during the operation in transport. Therefore, this paper reviews the computational modelling topics of droplet dynamics behaviour specifically for three categories, i.e. (i) the droplet sliding down a surface, (ii) the droplet moving in a gas-flowed microchannel, and (iii) the droplet jumping upon coalescence on superhydrophobic surface; in particular for the parameters like hydrophobicity surfaces, droplet sizes, numerical methods, channel sizes, wall conditions, popular references and boundary conditions.

고분자전해질형 연료전지의 단순 채널 리브 형상에서의 물방울 가시화 연구 (Visualization of Water Droplets in the Simple Flow Channel and Rib Geometry for Polymer Electrolyte Membrane Fuel Cells (PEMFCs))

  • 최민욱;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.386-392
    • /
    • 2014
  • The effective water management in a polymer electrolyte membrane fuel cell (PEMFC) is one of the key strategies for improving cell performance and durability. In this work, an ex situ measurement was carried out to understand the water droplet behavior on the surface of gas diffusion layer (GDL) as a fundamental study for establishing novel water management. For that purpose, simplified cell including one rib and two flow channels was designed and fabricated. Using this ex situ device, the water droplet emergence through the GDL of the PEMFC was emulated to understand liquid water transport through the porous diffusion medium. Through the visualization experiment, the emergence and growth of water droplets at the channel/GDL interface are mainly observed with the surface characteristics of GDL (SGL 10BA, 24BA) and rib when the liquid water passes through the GDL and is expelled to the flow channel. It is expected that the results obtained from this study can contribute to the better understanding on the water droplet behavior (emergence and removal) in the flow channels of PEMFC.

연속적 전기습윤 효과를 이용한 액체금속 액적의 채널 내 거동 (Movement of Liquid Metal Droplet in Channel by Continuous Electrowetting Effect)

  • 백승범;원동준;김호진;김준원
    • 한국정밀공학회지
    • /
    • 제33권3호
    • /
    • pp.217-223
    • /
    • 2016
  • In this paper, the movement of a liquid metal droplet in a channel by continuous electrowetting effect is analyzed. The channel is fabricated using two glass substrates and silicone rubber as spacers, and a mercury droplet and dilute sulfuric acid are added into the channel. The droplet is moved according to voltage applied at both ends of the channel through an electrolyte. According to the shape of the droplet and the applied voltage, the velocity of the droplet is changed. The velocity is proportional to the applied voltage and inversely proportional to the length of the droplet, both theoretically and experimentally. Contact angle hysteresis and a meniscus change were also found in the moving state. This implies the existence of a threshold in movement by Laplace pressure difference. The experiment indicated that the sliding angle was inversely proportional to the width of the droplet but that the voltage threshold was proportional to the width.

GDL을 고려한 고분자전해질형 연료전지 모사 단위 유로 채널에서의 물방울 유동 특성에 대한 실험적인 고찰 (Experimental Investigation of the Water Droplet Dynamics inside the Simulated PEMFC Single Flow Channel with GDL)

  • 김한상;지용휘;인지헌;안지용
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.76-83
    • /
    • 2013
  • Polymer electrolyte membrane fuel cells (PEMFCs) are regarded as a promising alternative to replace the existing automotive power sources. To get high performance and long-term durability for PEMFC systems, novel water management is essential. To this end, a comprehensive understanding of dynamics of the liquid water droplets within an operating PEMFC plays an important role. In this work, direct visualization of dynamic behaviors of the water droplet in the ex situ unit flow channel of a PEMFC including gas diffusion layer (GDL) is carried out as one of the fundamental studies for novel water management. Water droplet dynamics such as the movement and growth of liquid water droplets are mainly presented. Effects of GDL characteristics and inlet air flow rate on the water droplet transport and its removal from the flow channel are also discussed. The data obtained in this study can contribute to build up the fundamental operating strategy including balanced water removal capacity for automotive PEMFC systems.

교류 전기습윤에서 부유물의 영향 (Effect of Suspension in AC Electrowetting)

  • 고성희;오정민;강관형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.379-382
    • /
    • 2006
  • We are investigating the effect of particle on electrowetting, and this paper reports the experimental results obtained until now. The experiment was performed for different particle sizes, electrolyte concentration, and AC frequencies. The problem is quite complicated by various factors, such as the existence of surfactant in suspension and sedimentation of particles. We could not draw a concrete conclusion on the effect of particles, and it needs further investigations. We also report interesting phenomena observed during the experiment. It includes the droplet generation at the edge of a droplet, pseudo-bistability of electrowetting, flow generation inside a droplet, and the chain formation of particles inside a droplet.

  • PDF

브리지 특성이 트래킹에 미치는 영향에 관한 연구 (A Study on the Effect of Bridge's Characteristics on Tracking Phenomena)

  • 지승욱;옥경재;이춘하;이광식
    • 조명전기설비학회논문지
    • /
    • 제22권8호
    • /
    • pp.82-88
    • /
    • 2008
  • 본 논문은 전해액에 의해 양전극 사이에 형성되는 브리지가 트래킹에 미치는 영향을 기술하고 있다. IEC(International Electrotechnical Commission) 60589의 방법으로 만들어진 1, 3, 5[wt%] NaCl 용액을 이용하여 KS C IEC 60112의 전극에서 트래킹 실험을 하였다. 트래킹 진전과정 중에서 브리지가 형성되었을 때의 전압, 전류, 저항 및 열화상을 측정하여 분석하였다. 그 결과 전해액의 전도율이 커짐에 따라 브리지에서 발생되는 줄열도 커졌다. 하지만 전해액의 기화열로 인해 전해액의 끓는점을 넘지는 못했다. 다만, 전해액의 전도율이 커짐에 따라 건조대 형성에 소요되는 시간이 짧아졌다. 따라서 다음 적하까지 보다 긴 시간동안 건조대를 유지함으로써, 방전 기회가 증가하기 때문에 트래킹 진전이 빨라짐을 알 수 있었다.

페놀수지의 C.T.I에 미치는 영향 (Influence of the C.T.I of phenolic resin)

  • 이보호;박동화;정인성
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제1권1호
    • /
    • pp.70-77
    • /
    • 1988
  • This paper describes the influence of the electrode materials, moisture content, electrolyte density, temperature, surface state, ion absorbent on the C.T.I of phenolic resin by the I.E,C, 112 method. C.T.I are increased for electrode materials with low hydrogen overvoltage and high soluble point. Increusing moisture content of samples increased by logarithmical on the droplet number to tracking breakdown. Increasing electrolyte temperature region above 70-80(.deg.C) decreased hydrogen over-voltage, following the density changes are decreased by C.T.I=1/aD$^{2}$-bD+C.

  • PDF

플러딩 조건 하에서의 고분자전해질형 연료전지 GDL 표면과 공기극 유로 채널에서의 물방울 유동 특성 고찰 (Investigation of Water Droplet Behaviour on GDL Surface and in the Air Flow Channel of a PEM Fuel Cell under Flooding Conditions)

  • 김한상;민경덕
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.476-483
    • /
    • 2012
  • Proper water management is crucial for the efficient operation of polymer electrolyte membrane (PEM) fuel cell. Especially, for automotive applications, A novel water management that can avoid both membrane dry-out and flooding is a very important task to achieve good performance and efficiency of PEM fuel cells. The aim of this study is to investigate the liquid water behavior on the gas diffusion layer (GDL) surface and in the cathode flow channel of a PEM unit fuel cell under flooding conditions. For this purpose, a transparent unit fuel cell is devised and fabricated by modifying the conventional PEM fuel cell design. The results of water droplet behavior under flooding conditions are mainly presented. The water distributions in the cathode flow channels with cell operating voltage are also compared and analyzed. Through this work, it is expected that the data obtained from this fundamental study can be effectively used to establish the basic water management strategy in terms of water removal from the flow channels in a PEM fuel cell stack.