• Title/Summary/Keyword: Electroluminescent film

Search Result 98, Processing Time 0.029 seconds

Preparation and Characteristics of Red Organic Electroluminescent Devices Using Multilayer Structure (다층 박막을 이용한 적색 유기 전기발광 소자의 제작 및 발광 특성 연구)

  • 황장환;김영관;손병청
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.525-528
    • /
    • 1997
  • In this study, Eu(TTA)$_3$(phen) was synthesized and its films were prepared by vapor deposition method. Its films were characterized by UV-Vis absorption spectroscopy, Atomic Force Microscopy(AFM) and Photoluminescence(PL) measurements. Their electroluminescent(EL) characteristics were investigated by PL measurements, where a cell structure of glass substrate/ITO/Eu(TTA)$_3$(phen)/Al was employed. It was found that its films were well prepared without any decomposition and the film thickness could be controlled by adjusting the amount of Eu(TTA)$_3$(phen) in a boat. The EL spectrum of these films was almost the same as that of PL spectrum of these films.

  • PDF

Preparation and Properties of Organic Electroluminescent Devices Using Low Molecule Compounds (저분자 화합물을 이용한 유기 전계발광소자의 제작과 특성 연구)

  • 노준서;조중연;유정희;장영철;장호정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • The multi-layered OELDs(organic electroluminescent devices) were prepared on the patterened ITO (indium tin oxide)/glass substrates by the vacuum thermal evaporation method. The $Alq_3$ (tris-(8-hydroxyquinoline)aluminum) low molecule compound was used as the light emission layer. TPD(triphenyl-diamine) and $\alpha-NPD$ were used as the hole transport layer. CuPc (Copper phthalocyanine) was also used as the hole injection layers. In addition, QD2 (quinacridone2) organic material with $10\AA$ thickness was deposited in the $Alq_3$ emission layer to improve the luminance efficiency. The threshold voltage was about 7V for all devices. The luminance and efficiency of devices was improved by substitution the $\alpha-NPD$ for TPD as the hole as the hole transport layer. The luminance efficiency of the OELD sample with QD2 thin film in the $Alq_3$ emission layer was found to be 1.55 lm/W, which is about 8 times larger value compared to the sample without QD2 thin layer.

  • PDF

Fabrication and Characteristics of High Brightness White Emission Electroluminescent Device (고휘도 백색방출 전계발광소자의 제작 및 특성)

  • Bae, Seung-Choon;Kim, Jeong-Hwan;Park, Sung-Kun;Kwun, Sung-Yul;Kim, Woo-Hyun;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.10-15
    • /
    • 1999
  • White emission thin film electroluminescent device was fabricated using ZnS for phosphor layer and BST ferroelectric thin film for insulating layer. For fabrication conditions of BST thin film, stoichiometry of target was $Ba_{0.5}Sr_{0.5}TiO_3$, substrate temperature was $400^{\circ}C$, working pressure was 30 mTorr, and A:$O_2$ ratio was 9:1. At this time, dielectric constant was 209 at 1kHz frequency. For phosphor layer ZnS:Mn, ZnS:Tb, and ZnS:Ag were used. Mixing rates of activators were respectively 0.8, 0.8, and 1 wt%. Total thickness of phosphor tapers was 500 nm, thickness of lower insulating layer was 200 nm, and thickness of upper insulating layer was 400 nm. In this conditions, luminescence threshold voltage of thin film electroluminescent device was $95\;V_{rms}$, maximum brightness was $3,000\;cd/m^2$ at $150\;V_{rms}$. Luminescence spectrum peak was observed at region of blue(450 nm), green(550 nm), and red(600 nm).

  • PDF

Thin-film passivation of the polymer EL device using parylene and its application to the passive matrix PELD system

  • Lee, Cheon-An;Jin, Sung-Hun;Jung, Keum-Dong;Lee, Jong-Duk;Park, Byung-Gook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.669-672
    • /
    • 2004
  • The thin-film passivation technology using the poly-para-xylylene (parylene) was applied to polymer electroluminescent devices. The fabricated device shows a good luminescent characteristic of maximum 11640 cd/$m^2$. The measured lifetime was reached up to 28 hours, which means the effectiveness of the passivation. Applying the parylene thin-film passivation technique, 10${\times}$10 passive matrix display system was implemented and obtained some still images.

  • PDF

Effect of Rb Doping on Aging Characteristics of SrS:Ce Thin Film Electroluminescent Devices (SrS:Ce 박막 EL 소자의 열화특성에 관한 Rb 첨가의 영향)

  • Lee, S.T.;Heo, S.G.;Lee, H.C.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.259-260
    • /
    • 2006
  • Effects of Rb doping on the aging characteristics have been studied in SrS:Ce thin film electroluminescence (EL) devices. It has been found that a luminance saturation and decrease of an EL efficiency are suppressed by Rb doping. For the SrS:Ce,Rb device, a luminance and an efficiency after 1024 h of aging at 1 kHz drive maintain at about 70% and 80% of the initial values, respectively.

  • PDF

Effect of Thermal Heat Treatment on the Characteristics of Vertical Type Organic Thin Film Transistor Using Alq3 as Active Layer and Its Application for OLET

  • Oh, Se-Young;Kim, Young-Do;Hwang, Sun-Kak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.644-647
    • /
    • 2007
  • We have fabricated vertical type organic thin film transistor using tris-8-hydroxyquinoline aluminum $(Alq_3)$. The effects of the growth control of $Alq_3$ thin layer on the grain structure and the flatness of film surface have been investigated. In addition, we have fabricated light emitting transistor and then investigated electroluminescent properties.

  • PDF

Development and Application of Group IV Transition Metal Oxide Precursors

  • Kim, Da Hye;Park, Bo Keun;Jeone, Dong Ju;Kim, Chang Gyoun;Son, Seung Uk;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.303.2-303.2
    • /
    • 2014
  • The oxides of group IV transition metals such as titanium, zirconium, hafnium have many important current and future application, including protective coatings, sensors and dielectric layers in thin film electroluminescent (TFEL) devices. Recently, group IV transition metal oxide films have been intensively investigated as replacements for SiO2. Due to high permittivities (k~14-25) compared with SiO2 (k~3.9), large band-gaps, large band offsets and high thermodynamic stability on silicon. Herein, we report the synthesis of new group IV transition metal complexes as useful precursors to deposit their oxide thin films using chemical vapor deposition technique. The complexes were characterized by FT-IR, 1H NMR, 13C NMR and thermogravimetric analysis (TGA). Newly synthesised compounds show high volatility and thermal stability, so we are trying to deposit metal oxide thin films using the complexes by Atomic Layer Deposition (ALD).

  • PDF

Electro-optical characterization of heterostructure organic electroluminescent devices (2층 구조 유기 박막 EL 소자의 전기-광학적특성)

  • Kim, Min-Soo;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.10-15
    • /
    • 1995
  • Organic thin film electroluminescent(EL) cells were fabricated. Their output characteristics and luminance versus voltage characteristics were measured with different work function metal electrodes. The EL structure was Indium-Tin-Oxide(ITO)/hole transport layer/emission layer(electron transport layer)/metal electrode. PMMA+TPD(0.5 wt%), MC homopolymer+TPD(0.005 wt%) and (MC/MMA) copolymer+TPD(0.005 wt%) were used as hole transport layer. Ca, Mg, Mg:Ag(10:l) and Al were used as metal electrode. I-V output showed exponential feature, and the threshold voltage of 5 volts and the luminance of over 700 $Cd/m^{2}$ at 10 volts were observed.

  • PDF

Organic electroluminescent device using Zn(phen)q as emitting layer

  • Kim, Won-Sam;You, Jung-Min;Lee, Burm-Jong;Jang, Yoon-Ki;Kwon, Young-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1280-1283
    • /
    • 2005
  • A novel zinc complex, Zn(phen)q, was synthesized from 1,10-phenanthroline (phen) and 8-hydroxyquinoline (q) as organic ligands and its electroluminescent (EL) properties were characterized. The structure of Zn(phen)q was elucidated by FT-IR, UV-Vis and XPS. The complex Zn(phen)q showed thermal stability up to $300^{\circ}C$ under nitrogen flow, which was measured by TGA and DSC. The photoluminescence (PL) of the Zn(phen)q was measured from the THF solution and the solid film on quartz substrate. The PL emission of Zn(phen)q exhibited green light centered at about 505nm. The EL devices were fabricated by the vacuum deposition. The EL devices having the structure of ITO/a-NPD/Zn(phen)q/Li:Al were studied, where 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl(a-NPD) used as a hole transport layer(HTL). a-NPD has high Tg of $96^{\circ}C$ and thus makes the device thermally stable. The EL emission of Zn(phen)q exhibited also green light centered at 532nm.

  • PDF

A Study on the Development of ac Powder Electroluminescent Lamp (AC 구동 분산형 전장발광램프 개발에 관한 연구)

  • Kim, H.S.;Kim, E.D.;Kang, D.P.;Park, J.M.;Moon, S.I.;Kang, U.;Chun, B.D.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.306-309
    • /
    • 1989
  • This paper describes the Manufacturing process and electrical properties of ac thick film electroluminescent lamps which made of the mixture of ZnS:Cu,Cl phosphor powder and polymer binding materials. The phosphor layer is sandwiched between two electrodes, one of which is transparent, and is supported by a substrate. The substrate may be glass or flexible plastic or it may be metallic. In this study we manufactured suspend layer which consists of ZnS:Cu,Cl powder suspended in a NBR. As yet our results are behind other commercial product in electrical properties and brightness. However they can be improved by selection of appropriate polymer binding materials, development of blending technology.

  • PDF