• Title/Summary/Keyword: Electroless plating

Search Result 440, Processing Time 0.026 seconds

Comparison of Deposition Behavior and Properties of Cyanide-free Electroless Au Plating on Various Underlayer Electroless Ni-P films

  • Kim, Dong-Huyn
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.4
    • /
    • pp.202-214
    • /
    • 2022
  • Internal connections between device, package and external terminals for connecting packaging and printed circuit board are normally manufactured by electroless Ni-P plating followed by immersion Au plating (ENIG process) to ensure the connection reliability. In this study, a new non-cyanide-based immersion and electroless Au plating solutions using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent was investigated on different underlayer electroless Ni-P plating layers. As a result, it was confirmed that the deposition behavior and film properties of electroless Au plating are affected by grain size and impurity of the electroless Ni-P film, which is used as the plating underlayer. Au plating on the electroless Ni-P plating film with a dense surface structure showed the highest bonding strength. In addition, the electroless Au plating film on the Ni-P plating film has a smaller particle size exhibited higher bonding strength than that on the large particle size.

Effect of underlayer electroless Ni-P plating on deposition behavior of cyanide-free electroless Au plating (비시안 무전해 Au 도금의 석출거동에 미치는 하지층 무전해 Ni-P 도금 조건의 영향)

  • Kim, DongHyun;Han, Jaeho
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.5
    • /
    • pp.299-307
    • /
    • 2022
  • Gold plating is used as a coating of connector in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. In most cases, internal connection between device and package and external terminals for connecting packaging and printed circuit board are electroless Ni-P plating followed by immersion Au plating (ENIG) to ensure connection reliability. The deposition behavior and film properties of electroless Au plating are affected by P content, grain size and mixed impurity components in the electroless Ni-P alloy film used as the underlayer plating. In this study, the correlation between electroless nickel plating used as a underlayer layer and cyanide-free electroless Au plating using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent was investigated.

Review on Electroless Plating(I) (무전해도금(I))

  • Kim, Man;Kwon, Sik-Chol
    • Journal of Surface Science and Engineering
    • /
    • v.19 no.3
    • /
    • pp.121-127
    • /
    • 1986
  • There are many plating methods already commercially employed in te surface technology. One of the plating methods is electroless (chemical) plating, which is deposited by auto-catalytic reduction of metallic ion with the reducing agent in the plating bath. And it has many advantages comparing with electrolytic plating in respect of properties of deposit, such as corrosion resistance, wear resistance, uniformity, hardness, adhesion and so on. So, electroless plating is the fatest growing process in metallization of plastic and electronic industry. The properties and numerous applications of electroless deposits are attracting more and more attention from finish specifies. Many metal finishers are considering set-up of new electroless line in their shops. This review will be beneficial to domestic metal finishers to understand the real status of present electroless plating technology. It will also provide some knowledge on the economic aspect of electroless plating for the commercial application of specific parts.

  • PDF

Effects of pH and Plating Bath Temperature on Formation of Eco-Friendly Electroless Ni-P Plating Film on Aluminum (알루미늄 위 친환경적 무전해 Ni-P 도금막 형성에 pH와 도금조 온도가 미치는 영향)

  • Gee, Hyun-Bae;Bin, Jung-Su;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.361-368
    • /
    • 2022
  • The overall process, from the pre-treatment of aluminum substrates to the eco-friendly neutral electroless Ni-P plating process, was observed, compared, and analysed. To remove the surface oxide layer on the aluminum substrate and aid Ni-P plating, a zincation process was carried out. After the second zincation treatment, it was confirmed that a mostly uniform Zn layer was formed and the surface oxide of aluminum was also removed. The Ni-P electroless plating films were formed on the secondary zincated aluminum substrate using electroless plating solutions of pH 4.5 and neutral pH 7.0, respectively, while changing the plating bath temperature. When a neutral pH7.0 electroless solution was used, the Ni-P plating layer was uniformly formed even at the plating bath temperature of 50 ℃, and the plating speed was remarkably increased as the bath temperature was increased. On the other hand, when a pH 4.5 Ni-P electroless solution was used, a Ni-P plating film was not formed at a plating bath temperature of 50 ℃, and the plating speed was very slow compared to pH 7.0, although plating speed increased with increasing bath temperature. In the P contents, the P concentration of the neutral pH 7.0 Ni-P electroless plating layer was reduced by ~ 42.3 % compared to pH 4.5. Structurally, all of the Ni-P electroless plating layers formed in the pH 4.5 solution and the neutral (pH 7.0) solution had an amorphous crystal structure, as a Ni-P compound, regardless of the plating bath temperature.

Fabrication of Highly Conductive Yarn using Electroless Nickel Plating (무전해 니켈 도금법을 이용한 고성능 도전사의 제조)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • Highly conductive yarn was successfully obtained using electroless nickel plating method with palladium activation. In the presence of palladium seed on surface of fibers as a catalyst, continuos nickel layer produced on surface of fibers by reducing $Ni${2+}$ ion in the electroless plating bath to $Ni^0$. It was found that the Pd-activation using $SnCl_2$ and $PdCl_2$ to deposit palladium seeds on the surface of fibers plays a key role in the subsequent electroless plating of nickel. It also found that electroless nickel plating on the fibers can induce the nickel-plated $ELEX^{(R)}$ fibers to improve the electrical conductivity of the fibers. The thickness of nickel coating layer on the Pd-activated $ELEX^{(R)}$ fibers and specific conductivity of the fiber were increased through electroless plating time. The temperature of nickel plating bath was very effective to enhance the nickel deposition rate.

ELECTROLESS PLATING OF NICKEL FOR MICRO-STRUCTURE FABRICATION

  • Jin, Huh;Lee, Jae-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • Electroless plating nickel has superior mechanical property to electroplated nickel. Furthermore nickel can be coated on nonconducting substrate. In this research, electroless plating of nickel were conducted in different bath condition to find optimum conditions of electroless nickel plating for MEMS applications. The selectivity of activation method on several substrates was investigated. The effects of nickel concentration, reducing agent concentration and inhibitor on deposition rate were investigated. The effect of pH on deposition rate and content of phosphorous in deposited nickel was also investigated.

  • PDF

Deposition behavior of cyanide-free electroless Au plating solution using thiomalic acid as complexing agent and aminoethanethiol as reducing agent and characteristics of plated Au film (티오말산을 착화제로 하고 아미노에탄티올을 환원제로 하는 비시안계 무전해 Au 도금액의 석출 거동 및 도금 특성)

  • Han, Jaeho;Kim, DongHyun
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.2
    • /
    • pp.102-119
    • /
    • 2022
  • Gold plating is used as a coating of connecter in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. As increasing the demand for miniaturization of printed circuit boards and downsizing of electronic devices, several types of electroless gold plating solutions have been developed. Most of these conventional gold plating solutions contain cyanide compounds as a complexing agent. The gold film obtained from such baths usually satisfies the requirements for electronic parts mentioned above. However, cyanide bath is highly toxic and it always has some possibility to cause serious problems in working environment or other administrative aspects. The object of this investigation was to develop a cyanide-free electroless gold plating process that assures the high stability of the solution and gives the excellent solderability of the deposited film. The investigation reported herein is intended to establish plating bath composition and plating conditions for electroless gold plating, with thiomalic acid as a complexing agent. At the same time, we have investigated the solution stability against nickel ion and pull strength of solder ball. Furthermore, by examining the characteristics of the plated Au plating film, the problems of the newly developed electroless Au plating solution were improved and the applicability to various industrial fields was examined. New type electroless gold-plating bath which containing thiomalic acid as a complexing agent showing so good solution stability and film properties as cyanide bath. And this bath shows the excellent stability even if the dissolved nickel ion was added from under coated nickel film, which can be used at the neutral pH range.

Recent Progress in Electroless Plating of Copper

  • Sharma, Ashutosh;Cheon, Chu-Seon;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.1-6
    • /
    • 2016
  • In this article, the recent developments in electroless plating of copper, electroless bath formulation and effect of plating parameters have been reviewed. Cyanide free electroless baths are now being developed and studied due to the various environmental concerns. Various organic chemicals such as complexing agents, reducing agents, and additives such as poly-alcohols and aromatic ring compounds have been added to copper plating baths for promising results. The effects of various reducing and complexing agents, bath conditions like additives, bath pH, and composition have been summarized. Finally the applications of the electroless plating of copper and latest developments have been overviewed for further guidance in this field.

Analysis of cyanide free electroless Au plating solution by capillary elecrophoresis (캐피라리 전기 영동법에 의한 비시안 무전해 Au 도금액의 분석)

  • Han, Jaeho;Kim, DongHyun
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.2
    • /
    • pp.120-132
    • /
    • 2022
  • In the non-cyanide-based electroless Au plating solution using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent, analysis of each component constituting the plating solution is essential for the analysis of the reaction mechanism. And component analysis in the plating solution is important for monitoring component changes in the plating process and optimizing the management method. Capillary Electrophoresis (CE) method is rapid, sensitive and quantitative and could be readily applied to analysis of Aun+ ion, complexing agent and reducing agent in electroless Au plating solution. In this study, the capillary electrophoresis method was used to analyze each component in the electroless Au plating solution in order to elucidate the complex bonding form and the plating mechanism of the non-cyanide-based electroless Au plating bath. The purpose of this study was to establish data for optimizing the monitoring and management method of plating solution components to improve the uniformity of precipitation and stability. As a result, it was confirmed that the analysis of thiomalic acid as a complexing agent and Aun+ ions and the analysis of aminoethanethiol as a reducing agent were possible by capillary electrophoresis. In the newly developed non-cyanide-based electroless Au plating solution, it was confirmed that Aun+ ions exist in the form of Au+ having a charge of +1, and that thiomalic acid and Au+ are combined in a molar ratio of 2 : 1. In addition, it was confirmed that aminoethanethiol can form a complex by combining with Au+ ions depending on conditions as well as acting as a reducing agent.

Effect of Plating Condition and Surface on Electroless Co-Cu-P Alloy Plating Rate (무전해 Co-Cu-P 도금속도에 미치는 도금 조건과 표면상태의 영향)

  • Oh, L.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.31-39
    • /
    • 2000
  • Relationships between the plating condition and the plating rate of the deposition film for the electroless plating of Co-Cu-P alloy were discussed in this report. The result obtained from this experiment were summarized as follow ; The optimum bath composition was consisted of 0.8 ppm thiourea as a stabilizing agent. Composition of the deposit was found to be uniform after two hours of electroless plating. Plating rates of nickel-catalytic surface and zincate-catalytic surface were found to be very closely equal, but the plating time of nickel-catalytic surface took longer than that of the zincated-catalytic surface.

  • PDF