• Title/Summary/Keyword: Electroless plate

Search Result 27, Processing Time 0.031 seconds

An Environment-Friendly Surface Pretreatment of ABS Plastic for Electroless Plating Using Chemical Foaming Agents

  • Kang, Dong-Ho;Choi, Jin-Chul;Choi, Jin-Moon;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.174-177
    • /
    • 2010
  • We have developed an environment-friendly etching process, an alternative to the dichromic acid etching process, as a pretreatment of acrylonitrile-butadiene-styrene (ABS) plastic for electroless plating. In order to plate ABS plastic in an electroless way, there should be fine holes on the surface of the ABS plastic to enhance mechanically the adhesion strength between the plastic surface and the plate. To make these holes, the surface was coated uniformly with dispersed chemical foaming agents in a mixture of environmentally friendly dispersant and solvent by the methods of dipping or direct application. The solvent seeps into just below the surface and distributes the chemical foaming agents uniformly beneath the surface. After drying off the surface, the surface was heated at a temperature well below the glass transition temperature of ABS plastic. By pyrolysis, the chemical foaming agents made fine holes on the surface. In order to discover optimum conditions for the formation of fine holes, the mixing ratio of the solvent, the dispersant and the chemical foaming agent were controlled. After the etching process, the surface was plated with nickel. We tested the adhesion strength between the ABS plastic and nickel plate by the cross-cutting method. The surface morphologies of the ABS plastic before and after the etching process were observed by means of a scanning electron microscope.

Preparation of Ni-PTFE Electrode using Nickel Plating for Alkaline Fuel Cell (니켈도금기술을 이용만 알칼리형 연료전지용 Ni-PTFE전극의 개발)

  • Kim, Jae-Ho;Lee, Young-Seak
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.4
    • /
    • pp.291-299
    • /
    • 2009
  • Ni-plated polytetrafluoroethylene(Ni-PTFE) particles($25{\mu}m$, $500{\mu}m$) were prepared by using nickel electroless plating. The Ni content in Ni-PTFE particles increased with increasing the amount of reduction agent. At about 53 wt% Ni content, $25{\mu}m$ Ni-PTFE particles showed conductivity of 320S/m. The Ni-PTFE particles were formed into the Ni-PTFE plate using heat treatment at $350^{\circ}C$ under $10{\sim}1000kg/cm^2$. The Ni-PTFE plate displayed the high conductivity of 5100S/m due to the formation of 3-dimentional Ni network. The plate was used as an electrode in an alkaline fuel cell(AFC). In terms of the current density, the Ni-PTFE electrode having higher Ni content(53 wt%) showed improved performance.

Thermal Properties of Diamond Aligned Electroless Ni Plating Layer/Oxygen Free Cu Substrates (다이아몬드 배열 무전해 니켈 도금층/무산소동 기판의 열전도도 특성)

  • Jeong, Da-Woon;Kim, Song-Yi;Park, Kyoung-Tae;Seo, Seok-Jun;Kim, Taek Soo;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.134-137
    • /
    • 2015
  • The monolayer engineering diamond particles are aligned on the oxygen free Cu plates with electroless Ni plating layer. The mean diamond particle sizes of 15, 23 and $50{\mu}m$ are used as thermal conductivity pathway for fabricating metal/carbon multi-layer composite material systems. Interconnected void structure of irregular shaped diamond particles allow dense electroless Ni plating layer on Cu plate and fixing them with 37-43% Ni thickness of their mean diameter. The thermal conductivity decrease with increasing measurement temperature up to $150^{\circ}C$ in all diamond size conditions. When the diamond particle size is increased from $15{\mu}m$ to $50{\mu}m$ (Max. 304 W/mK at room temperature) tended to increase thermal conductivity, because the volume fraction of diamond is increased inside plating layer.

A Study on the Magnetic Properties of the Co-Ni-P thin Plate by Electroless Plating (무전해도금법에 의한 Co-Ni-P 박막의 자기적특성에 관한 연구)

  • Kim, C.W.;Lee, C.;Yoon, S.R.;Joung, I.
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.1013-1019
    • /
    • 1995
  • The thin plate of Co-Ni-P was deposited on the polyester film by the electroless plating method. Through present experiments, deposition rates and metal compositions of the plates were determined according to compositions of solution, pH and temperature. Also, magnetic properties of plates were examined according to metal compositions. Considering magnetic properties and deposition rates of electroless plating, the best condition was obtained as pH of 8.5 and 90℃. It was observed that metal compositions were evidently varied by the pH of solutions and the concentration of complex agents. However. they were not affected by other factors. At the optimum condition, the composition of the plate was Co(78%), Ni(16%), and P(6%). Also, it was found that the coercive force was 370 Oe, and squareness was 0.65 at this condition. Magnetic properties (hard or soft) of thin plates were determined by metal compositions. Therefore. the plate became soft magnetic plate as the composition of nickel increased over 30 per cents. The crystal structure of the soft magnetic plate was found to be amorphous in which it was strongly oriented to the (111)phahe of nickel. On the ohter hand, the hard magnetic place was found to be hcp crystalline of α-cobalt which was oriented to the (101)phase of cobalt and the (100)phase of cobalt.

  • PDF

A study on Manufacture of EMI Composite Powder by the Electroless Ni Plating Method (무전해 니켈도금방법을 이용한 EMI 복합분말제조에 관한 연구)

  • Joung, I.;Yoon, S.R.;Han, S.N.;Na, J.H.;Kim, C.W.
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.444-449
    • /
    • 1998
  • There are various shielding materials that have been considered; the use of a metallic plate or the layering of a conductive material on a plastic surface and the insertion of filler in plastics. All of these methods have shown their merits and weakness. Therefore, many studies have concentrated on developing materials that effectively cut down EMI without increase in weights of housing materials. In these respects, this study has focused on investigations of the shielding effect of materials that have electroless nickel plating on the lamella structured micro particles surface with low specific gravity. When a film of electroless nickel were plated on a micro particle surfaces and then mixed with paint, the electromagnetic shielding effects were measured as 63dB. Although these effects were less than that 90dB of the copper plate, trials in a series of 6 times increased the shielding effect by IOdB and is applicable to wide range of EMI shielding.

  • PDF

Fabrication of Carbon Nanofiber/Cu Composite Powder by Electroless Plating and Microstructural Evolution during Thermal Exposure (무전해 도금에 의한 탄소나노섬유/Cu 복합 분말 제조 및 열적 안정성)

  • Kim In-soo;Lee Sang-Kwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.39-42
    • /
    • 2004
  • Carbon nanofiber/Cu composite powder has been fabricated by electroless plating process. Microstructural evolution of the composite powder after heat treatment under vacuum, hydrogen and air environment was investigated. A dispersed carbon nanofiber coated by copper was produced at the as-plated condition. Carbon nanofiber is coated uniformly and densely with the plate shaped copper particles. The copper plates on the carbon nanofiber aggregate during the thermal exposure at elevated temperature in vacuum and hydrogen in order to reduce surface energy. The thermal exposure of the composite powder in air at $400^{\circ}C$ for 3 hours leads to the spherodization of the composite powder owing to oxidation of copper.

  • PDF