• 제목/요약/키워드: Electroless nickel

검색결과 213건 처리시간 0.023초

ELECTROLESS PLATING OF NICKEL FOR MICRO-STRUCTURE FABRICATION

  • Jin, Huh;Lee, Jae-Ho
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.331-335
    • /
    • 1999
  • Electroless plating nickel has superior mechanical property to electroplated nickel. Furthermore nickel can be coated on nonconducting substrate. In this research, electroless plating of nickel were conducted in different bath condition to find optimum conditions of electroless nickel plating for MEMS applications. The selectivity of activation method on several substrates was investigated. The effects of nickel concentration, reducing agent concentration and inhibitor on deposition rate were investigated. The effect of pH on deposition rate and content of phosphorous in deposited nickel was also investigated.

  • PDF

무전해 니켈 도금법을 이용한 고성능 도전사의 제조 (Fabrication of Highly Conductive Yarn using Electroless Nickel Plating)

  • 홍소야;이창환;김주용
    • 한국염색가공학회지
    • /
    • 제22권1호
    • /
    • pp.77-82
    • /
    • 2010
  • Highly conductive yarn was successfully obtained using electroless nickel plating method with palladium activation. In the presence of palladium seed on surface of fibers as a catalyst, continuos nickel layer produced on surface of fibers by reducing $Ni${2+}$ ion in the electroless plating bath to $Ni^0$. It was found that the Pd-activation using $SnCl_2$ and $PdCl_2$ to deposit palladium seeds on the surface of fibers plays a key role in the subsequent electroless plating of nickel. It also found that electroless nickel plating on the fibers can induce the nickel-plated $ELEX^{(R)}$ fibers to improve the electrical conductivity of the fibers. The thickness of nickel coating layer on the Pd-activated $ELEX^{(R)}$ fibers and specific conductivity of the fiber were increased through electroless plating time. The temperature of nickel plating bath was very effective to enhance the nickel deposition rate.

Electroless Nickel Plating on Fibers for the Highly Porous Electrode

  • Cheon, So-Young;Park, So-Yeon;Rhym, Young-Mok;Kim, Doo-Hyun;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권2호
    • /
    • pp.117-120
    • /
    • 2010
  • Materials used as fuel cell electrode should be light, high conductive, high surface area for reaction, catalytic surface and uniformity of porous structure. Nickel is widely used in electrode materials because it itself has catalytic properties. When used as electrode materials, nickel of only a few im on the surface may be sufficient to conduct the catalytic role. To manufacture the nickel with porous structure, Electroless nickel plating on carbon fiber be conducted. Because electroless nickel plating is possible to do uniform coating on the surface of substrate with complex shape. Acidic bath and alkaline bathe were used in electroless nickel plating bath, and pH and temperature of bath were controlled. The rate of electroless plating in alkaline bath was faster than that in acidic bath. As increasing pH and temperature, the rate of electrolee plating was increased. The content of phosphorous in nickel deposit was higher in acidic bath than that in alkaline bath. As a result, the uniform nickel deposit on porous carbon fiber was conducted.

무전해 니켈 도금에서 pH에 따른 영향 (Effect of pH on electroless nickel plating)

  • 정승준;김병춘;박종은;이흥기;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.625-628
    • /
    • 1999
  • Recently. high-density printed circuit boards(PCB) become indispensable with the minaturization of components. Nickel is deposited on the copper patterns and followed by the gold deposition for improving connection reliability between the printed circuit boards and electronic components. Conventionally electrodeposition has been applied to metalization of copper patterns. However metalization by this method is not applicable for the isolated fine and concentrated patterns. Therefore, metalization technology of the fine patterns by electroless plating is required in place of electrodeposition. The application of electroless nickel plating for interconnection with solder strongly relies on the solderability and the interactions between nickel and solder. Factors such as phosphorus content of the deposit additive and bath temperature may influence solderability of the electroless nickel deposit. So solderability of electroless nickel/ gold deposits was investigated with substrates plated changing the condition of nickel solution.

  • PDF

전기분해법(電氣分解法)을 이용(利用)한 무전해(無電解) 니켈 도금폐액(鍍金廢液)으로부터 니켈 회수(回收) (Recovery of Nickel from Electroless Plating Wastewater by Electrolysis Method)

  • 이화영
    • 자원리싸이클링
    • /
    • 제21권2호
    • /
    • pp.41-46
    • /
    • 2012
  • 전해채취법을 이용하여 무전해 니켈 도금폐액으로부터 니켈을 회수하기 위한 실험을 수행하였다. 이를 위해 우선 가성소다를 첨가하는 방법으로 무전해 니켈 도금폐액중의 니켈을 수산화물 형태로 침전분리하였다. 또한, 니켈 수산화물을 황산 용액으로 용해시킨 니켈 수용액을 대상으로 전기분해를 실시하였다. 실험결과, 가성소다를 첨가하여 pH 10 이상으로 조절하면 99% 이상의 Ni을 수산화물로 침전시킬 수 있는 것으로 나타났다. 한편, 니켈 수용액으로부터 전해채취를 통한 Ni의 석출시 전류밀도가 증가할수록 전류효율은 감소하는 것으로 나타났다.

Recovery of Nickel from Spent Electroless Nickel Plating Baths

  • Tanaka, Mikiya;Kobayashi, Mikio;Seki, Tsutomu
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.270-274
    • /
    • 2001
  • With Increasing importance of electroless nickel plating technology in many fields such as electronic and automobile industries, the treatment of the spent baths is becoming a serious problem. These spent baths contain iron and zinc as impurities, organic acids as complexing reagents, and phosphonate ions as oxidized species of tile reducing reagent. as well as several grams per liter of nickel. The spent baths are currently treated by conventional precipitation method. but a mettled with no sludge generation is desired. This work aims at establishing a recycling process of nickel from tile spent baths using solvent extraction. Extraction behaviors of nickel. iron. and zinc in various 쇼pes of real spent baths are investigated as a function of pH using LIX841, di (2-ethylhexyl)phosphoric acid (D2EHPA), and PC88A as tile extractants. Nickel is extracted by LIX84I at the equilibrium pH of more than 6 with high efficiency. For the weakly acid baths. iron and zinc are extracted by D2EHPA or PC88A without adjusting the pH of the baths leaving nickel in the aqueous phase. Stripping of nickel from LIX84I with sulfuric acid is also investigated. It is shown that concentrated nickel sulfate solution (> 100 ㎏-Ni/㎥) is obtained. This solution can be reused in the electroless plating process. Based on these findings, flow sheets for recovering nickel from the spent baths are proposed.

  • PDF

무전해 니켈 도금액 제조 (Preparation of Stock Solution for Electroless Nickel)

  • 정승준;최효섭;박종은;손원근;박추길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.621-624
    • /
    • 1999
  • Metalization technology of the fine patterns by electroless plating is required in place of electrodeposition as high-density printed boards(PCR) become indispensable with the miniaturization of electronic components. Electroless nickel plating is a suitable diffusion barrier between conductor meta1s, such as Al and Cu and solder is essetional in electronic packaging in order to sustain a long period of service. Moreover, Electroless nickel has particular characteristics including non-magnetic property, amorphous structure. wear resistance, corrosion protection and thermal stability In this study fundamental aspects of electroless nickel deposition were studied with effort of complexeing agents of different kinds. Then the property of electroless deposit are controlled by the composition of the deposition solution the deposition condition such as temperature and pH value and so on. the characteristics of the deposits has been carried out.

  • PDF

열처리에 따른 무전해 니켈 도금 층의 상변태 거동이 부식과 캐비테이션 침식에 미치는 영향 (Effect of Phase Transformation Behavior of Electroless Nickel Plating Layer on Corrosion and Cavitation-Erosion with Heat Treatment)

  • 박일초;김성종
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.64-71
    • /
    • 2024
  • The objective of this study was to investigate corrosion and cavitation-erosion characteristics of the electroless nickel plating layer with heat treatment. The crystallization temperature of the electroless nickel plating layer was about 410 ℃. The phase transformation energy was confirmed to be 12.66 J/g. With increasing heat treatment temperature, the amorphous electroless nickel plating layer gradually changed to crystalline Ni and Ni3P. At the same time, the crystal grain size was also increased. Additionally, when heat treatment was performed at a temperature above 400 ℃, NiO phase was observed due to oxidation phenomenon. As a result of the electrochemical polarization experiment, the corrosion resistance of the heat-treated electroless nickel plating layers was superior to that of the as-deposited plating layer. This was because crystal grains became larger and grain boundaries decreased during heat treatment. The cavitation-erosion resistance of heat-treated plating layers tended to be superior to that of as-deposited plating layers due to increased microhardness.

무전해 니켈도금에 대하여(I) (Electroless Nickel Plating)

  • 지태촌;여운관
    • 한국표면공학회지
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 1982
  • Electroless plating is the continious formation of metallic coatings from metal ions by che-mical reduction without the use of electrical current. This is, however, more expansive than the conventional electroplating but is often used because of certain adventage. Here, general description of past research on electroless nickel plating, especially about the merits of each research was given. Part(Ⅰ) is for the conposition of solution, pretreatment and facilities of electroless nickel plating.

  • PDF

무전해 Ni 도금의 전기화학적 고찰 (Electrochemical aspects of electroless nickel-boron plating)

  • 김영기;이원해
    • 한국표면공학회지
    • /
    • 제26권4호
    • /
    • pp.175-182
    • /
    • 1993
  • Electroless plating of nickel was studied electrochemically in the presence of complexing agents. Nickel sulfate solution with dimethylamine borance(DMAB) as the reducing agent was used. Effects of temperature pH, concentration and complexing agents-citric acid, EDTA, tartaric acid-were studied.Experimental meas-urements showed that the rate of electroless nickel deposition was closely related to electrochemical parame-ters such as temdperature, pH, concentration and the properties of complexing agets.

  • PDF