• 제목/요약/키워드: Electrohydraulic Servovalve

검색결과 5건 처리시간 0.024초

전기유압 서보밸브 플랩퍼-노즐에 대한 변동 배유 오리피스의 영향 해석 1 (An Analysis of the Effect of a Variant Drain Orifice Damping on an Electrohydraulic Servovalve Flapper-Nozzle Stage)

  • 이재천
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.50-59
    • /
    • 1999
  • The effect of a variant drain orifice damping on the characteristics of a servovalve flapper-nozzle stage is analyzed. Steady-state characteristics of flapper-nozzle stage and the linearized dynamics of flapper-nozzle assembly with a spool valve show that the variant drain orifice damping could improve such null performance characteristics as null pressure sensitivity and linearity of gain function. Generalized design criterion and a sufficient condition for servovalve stability are also established.

  • PDF

적층식 압전소자를 이용한 고속 서보밸브 시스템의 개발 (Development of a High-Speed Electrohydraulic Servovalve System Using Stack-Type Piezoelectric Elements)

  • 방영봉;이교일;임원규;주춘식;허재웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.733-736
    • /
    • 2003
  • This paper presents two systems of two-stage electrohydraulic servovalve with a nozzle-flapper pilot stage, which is controlled by stack-type piezoelectric elements. Two flapper moving mechanisms proposed in this research can compensate for the hysteresis problem and thermal expansion of the piezoelectric elements. The experimental results show that the first flapper moving mechanism has the frequency response of over 500 Hz and the second one has the response of over 600 Hz. And the first simplified servovalve system rising the first flapper moving mechanism has the frequency response of about 150 Hz, and the second system has the response of about 300 Hz at the supply pressure of 210 bar

  • PDF

적층식 압전소자를 이용한 고속 서보밸브 시스템의 개발 (Development of a High-Speed Electrohydraulic Servovalve System Using Stack-Type Piezoelectric Elements)

  • 방영봉;주춘식;이교일;심영보
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.71-80
    • /
    • 2003
  • This paper presents a two-stage electrohydraulic servovalve with a nozzle-flapper pilot stage, which is controlled by stack-type piezoelectric elements. The flapper moving mechanism developed in this research can compensate for the hysteresis problem and thermal expansion of the piezoelectric elements. The experimental result shows that this flapper moving mechanism has the frequency response of about 600 Hz. And a simplified servovalve system using this flapper moving mechanism has the frequency response of about 300 Hz at the supply pressure of 210 bar.

Development of a High-Speed Electrohydraulic Servovalve System Using Stack-Type Piezoelectric Elements

  • Joo, Choon-Shik;Bang, Young-Bong;Lee, Kyo-Il;Shim, Young-Bo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권6호
    • /
    • pp.29-37
    • /
    • 2003
  • This paper presents a two-stage electrohydraulic servovalve with a nozzle-flapper pilot stage, which is controlled by stack-type piezoelectric elements. The flapper moving mechanism developed in this research can compensate for the hysteresis problem and thermal expansion of the piezoelectric elements. The experimental result shows that this flapper moving mechanism has the frequency response of about 600 Hz. And a simplified servovalve system using this flapper moving mechanism has the frequency response of about 300 Hz at the supply pressure of 210 bar.

Premature Failure Analysis of Servovalve Components for a Thermal Power Plant

  • Chang, Sung-Yong;Chang, Joong-Chel;Kim, Bum-Soo;Seo, Min-Woo;Choi, Chel-Jong
    • 대한금속재료학회지
    • /
    • 제49권9호
    • /
    • pp.708-714
    • /
    • 2011
  • The premature failure of a servovalve used for six months in a thermal power plant has been analyzed. The servovalve was made of stainless steel, containing 16Cr-0.44Mo, along with other elements. An overload of oil-supply pumping and an abnormal increase in the oil flux were observed during operation. A study revealed that erosion and corrosion could be the main causes of the failure. The visual examination of the servovalve did not show any appreciable damage. However, corrosion and erosion of the servovalve were observed using scanning electron microscopy (SEM). Upon examination of the servovalve, the corrosion was found to have occurred throughout the bushing and spool; however, erosion occurred at only the edge-side. In addition, the condition of the electrohydraulic control system (EHC) oil was investigated with respect to its satisfaction of the management standard.