• Title/Summary/Keyword: Electrodes plates

Search Result 64, Processing Time 0.027 seconds

Design and fabrication of a Micromechanical Switch Using Polysilicon Surface Micromachining (다결정실리콘 표면 미세가공 기술을 이용한 초소형 기계식 스위치의 설계 및 제작)

  • Chae, Gyeong-Su;Han, Seung-O;Ha, Jong-Min;Mun, Seong-Uk;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.546-551
    • /
    • 2000
  • A micromechanical switch that can be used as a logic gate is described in this paper. This switch consists of fixed input electrodes an output electrode Vcc/GND electrodes and movable plates suspended by crab-leg flexures. for mechanical switching of an electrical signal a parallel plate actuator which comes in contact with output electrode was used. Provided that movable plates are connected to Vcc and a low input voltage(ground signal) is applied to the fixed input electrodes the movable plates are pulled by an electrostatic force between the fixed input electrodes and the movable plates. the proposed micromechanical switch was fabricated by surface micromachining technology with$2\mum$ -thick poly-Si and the measured threshold voltage for ON/OFF switching was 23.5V.

  • PDF

A Study of the Weld Strength of Extru-Rivet Spot Welding Using Electrodes Heated by Electric Resistance (전기저항가열 압출점접합공정에 있어서 접합강도에 관한 연구)

  • Lee, S.J.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.189-195
    • /
    • 2013
  • In this study, the weld strength of extru-rivet spot welding was investigated by simulation and experiment. In order to obtain hot plasticity flow bonding of the two plates by a single rivet, electrodes are used for heating of the two plates and the rivet by electric resistance. Because weld strength is influenced by the temperature in the weld zone, the diameter of the electrodes and the amount of current supplied to the electrodes are important variables. For the simulation, heat distribution and weld strength were calculated using DEFORM-3D. The weld strength in the weld zone was calculated for various values of the experimental parameters. The simulation results showed that the weld strength was the highest when the weld current was 37kA, the electrode diameter was 12mm, and the welding frequency was 90cycle. Aluminum 5052 was used for the experimental study. A total of three aluminum plates, two welding plates with 1mm thickness and one plate with 2mm thickness for the inserting rivet, were used for the experimental extru-rivet spot welding.

Characteristics of particulate matter collection efficiency and ozone emission rate of an electrostatic precipitator by thickness of high-voltage electrode and distance of collection plates (고전압 전극 두께와 집진판 간격에 따른 전기집진기의 미세먼지 집진효율 및 오존발생 특성)

  • Lee, Jae-In;Woo, Sang-Hee;Kim, Jong Bum;Lee, Seung-Bok;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.171-180
    • /
    • 2018
  • To optimize the shape of the electrostatic precipitator for the removal of particulate matter in subway environments, the wind-tunnel experiments were carried out to characterize collection efficiency and ozone emission rate. As a standardized parameter, power consumption divided by the square of flow velocity, was increased, the $PM_{10}$ collection efficiency increased. If the standardized parameter is higher than 1.0 due to high power consumption or low flow velocity, increase in thickness of electrodes from 1 to 2 mm, or increase in distance of collection plates from 5 to 10 cm did not change the $PM_{10}$ collection efficiency much. Increase in thickness of high-voltage electrodes, however, can cause decrease in $PM_{10}$ collection efficiency by 28% for low power consumption and high flow velocity. The ozone emission rate decreased as distance of collection plates became wider, because the ozone emission rate per unit channel was constant, and the number of collection channels decreased as the distance of collection plates increased. When the distance of collection plates was narrow, the ozone emission rate increased with the increase of the thickness of electrodes, but the difference was negligible when the distance of collection plates was wide. It was found that the electrostatic precipitator having a thin high-voltage electrodes and a narrow distance of collection plates is advantageous. However, to increase the thickness of high-voltage electrodes, or to increase the distance of collection plates is needed, it is necessary to increase the applied voltage or reduce the flow rate to compensate reduction of the collection efficiency.

Study on Cooling Rates and Mechanical Properties of H.T. Steel Plates in the Underwater Wet arc welding (고장력강의 습식 수중 아크용접에 대한 냉각율과 기계적 특성에 관한 연구)

  • 김민남
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.125-134
    • /
    • 1988
  • The feasibility for improving the cooling rates and mechanical properties of wet welding process is experimentally investigated by using new developed underwater wet electrodes and H.T. steel plates. Main results of this experimental study can be summarized as follows; 1) By shielding around weld arc surrounding, the cooling rates resulting from wet welds with developed electrodes on TMCP steel plates can be lower than of non-shielded wet welds. 2)A high quality of mechanical properties of wet welds on TMCP steel plates can be obtained with shielded weld arc surrounding.

  • PDF

Grounding Characteristic Analysis of Plate Electrodes

  • Kim, Sung-Sam;Kim, Ju-Chan;Koh, Hee-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.53-60
    • /
    • 2007
  • In this study, an experiment on the efficient construction method of plate electrodes, the influence of electric potential interference in plate electrodes, and building foundations were explored. The experimental result of the electric potential measurement was taken on the basis of the direction of movement and the condition in which the plate electrodes are laid underground in building foundations. It shows that the construction method of laying the plate electrodes vertically exhibits a more efficient reduction of electric potential in a diagonal direction and on an X axis than laying plates horizontally. For plate electrode construction in an area that has uniform conditions, the parallel joint construction method is more effective than a single construction to reduce earth electrical potential and ground resistance. In addition, a straight arrangement performs well in ground efficiency, compared to the parallel arrangement.

Removal of Dust in Positive and Negative Plates of Electrode Coated with Activated Carbon (활성탄으로 코팅된 전극에서 분진의 제거)

  • Kim, Kwang Soo;Park, Hyun Chul;Jun, Tae Hwan;Lee, Ju Haeng;Nam, Sang Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.830-837
    • /
    • 2013
  • The purposes of this research are to know the dust removal efficiency according to the changes of gab between positive and negative plates in dust removal chamber. The experiments for dust removal efficiencies were conducted with changing the electrode-plate gab from 2 cm to 1 cm while the electric pressure, influent flow, and linear velocity were kept 5 kV, 80 L/min, and 6 cm/sec, respectively. From the experimental results of the electrode-plate gab of 2 cm, dust removal efficiencies were decreased to as low as about 50%. Attached dust on the surface of electrodes was released due to a reverse electric charge of dust. From the experimental results of the electrode-plate gab of 1 cm, dust removal efficiencies were increased to as high as about 80% due to the dust attachment velocity to the electrodes to be far more fast than influent linear velocity. Finally, to protect a attached dust from occurring a reverse electric charge it is needed to install the non-conductor between positive and negative electrodes and also to remove air humidity.

The Flow Visualization of ER Fluid Between Two Parallel-Plate Electrodes Separated by Small Distance (좁은 평행평판전극 사이의 ER유체 유동의 가시화)

  • Park, Myeong-Kwan;Rhee, Eun-Jun;Oshima, Shuzo;Yamane, Ryuichiro
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.801-810
    • /
    • 1999
  • The purpose of present research was to get characteristics and basic knowledges of electrorheological(ER) suspension. To observe behaviors of the ER suspensions. transparent conductive plates were used to visualize the flow of ER suspensions between two parallel plate electrodes. The influence of flowing speed and intensity of electric field on the ER fluid were examined in circle-shaped electric field, and it takes several hundred milliseconds that suspensions in flow cluster. The present study also conducts a numerical analysis adopting the Bingham model. It is found that simple Bingham model can not property describe the flow behavior in the parallel plates.

Fabrication of pyroelectric infrared sensors using PLT thin plates (PLT 박편을 이용한 초전형 적외선 센서의 제작)

  • Kim, Young-Eil;Roh, Yong-Rae
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • High-sensitive pyroelectric infrared sensors have been fabricated with La-modified $PbTiO_{3}$(PLT) thin plates. The PLT thin plates have the composition of $(Pb_{0.9}La_{0.1}Ti_{0.75}O_{3})_{0.75}(PbO)_{0.25}$. Thickness of the thin plates is $100\;{\mu}m$. Top side electrodes exposed to IR are vacuum evaporated Ni-Cr, and bottom side electrodes are Ag. Each one takes the area of $1{\times}2\;mm^{2}$. The thin plates have a large resistivity of $6.41{\times}10^{10}{\Omega}{\cdot}cm$ and a relative dielectric constant of 341. They have a high figure of merit of $4.0{\times}10^{-11}\;Ccm/J$ due to its high pyroelectric coefficient of $4.45{\times}10^{-8}\;C/cm^{2}K$. The sensors show such a large voltage responsivity as 2501 V/W. That they can find practical applications like the pyroelectric infrared detectors.

  • PDF

Silicon Nitride Layer Deposited at Low Temperature for Multicrystalline Solar Cell Application

  • Karunagaran, B.;Yoo, J.S.;Kim, D.Y.;Kim, Kyung-Hae;Dhungel, S.K.;Mangalaraj, D.;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.276-279
    • /
    • 2004
  • Plasma enhanced chemical vapor deposition (PECVD) of silicon nitride (SiN) is a proven technique for obtaining layers that meet the needs of surface passivation and anti-reflection coating. In addition, the deposition process appears to provoke bulk passivation as well due to diffusion of atomic hydrogen. This bulk passivation is an important advantage of PECVD deposition when compared to the conventional CVD techniques. A further advantage of PECVD is that the process takes place at a relatively low temperature of 300t, keeping the total thermal budget of the cell processing to a minimum. In this work SiN deposition was performed using a horizontal PECVD reactor system consisting of a long horizontal quartz tube that was radiantly heated. Special and long rectangular graphite plates served as both the electrodes to establish the plasma and holders of the wafers. The electrode configuration was designed to provide a uniform plasma environment for each wafer and to ensure the film uniformity. These horizontally oriented graphite electrodes were stacked parallel to one another, side by side, with alternating plates serving as power and ground electrodes for the RF power supply. The plasma was formed in the space between each pair of plates. Also this paper deals with the fabrication of multicrystalline silicon solar cells with PECVD SiN layers combined with high-throughput screen printing and RTP firing. Using this sequence we were able to obtain solar cells with an efficiency of 14% for polished multi crystalline Si wafers of size 125 m square.

  • PDF

Crack Detection of Carbon Fiber Reinforced Composites by Electric Potential Method with Bridge Circuit Concept (브리지 회로 개념이 적용된 전기 전위법을 이용한 탄소섬유복합재료의 균열검출)

  • Hwang, Hui-Yun
    • Composites Research
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • This paper suggested the electric potential method with a bridge circuit concept for the detection of the location and crack growth of carbon fiber reinforced composites to reduce the measurement numbers. 2 pairs of electrodes were fabricated on the center cracked thin composite plates, and potential changes at one pair of adjacent electrodes were observed while external voltage input was applied to the other pair of adjacent electrodes. The effects of the size and interval of electrodes, location and propagating direction of center cracks were investigated by experiments and finite element analyses. Detectable crack size was influenced by the electrode interval rather than the electrode size, and crack detection was enhanced as the size and interval of electrodes were smaller. Besides, output potential changes were larger as the crack grew and was nearer the voltage input electrodes.