• Title/Summary/Keyword: Electrodepostion

Search Result 8, Processing Time 0.027 seconds

Mass Transfer to Amalgamated Copper Rotating Disk Electrode

  • Sulaymon, Abbas H.;Abbar, Ali H.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.165-171
    • /
    • 2012
  • An experimental study of mass transfer to an amalgamated copper rotating disc electrode has been employed to determine an empirical correlation for the mass transfer rate in laminar flow. The study was performed in a three-electrodes configuration using 0.1 M boric acid and 0.1M potassium chloride as supporting electrolyte with Zn (II) concentration in the range (25-100 mg $dm^{-3}$). Polarization curves at different zinc ion concentration are reported. Hydrogen and oxygen reduction has also been considered.The diffusion coefficients and mass transfer coefficient were obtained using limiting diffusion current technique based on zinc ion reduction. A least squares analysis indicates that the laminar flow results for 13067 < Re > 57552 and 550 < Sc > 1390 can be correlated by the following equation with correlation coefficient (CR) equal to 0.98: $sh=0.61Re^{0.5}Sc^{1/3}$.

The Effect of Arsenic on Copper Electrodeposition in Copper-Sulfate Solutions in Copper-Electrorefining (동 전해정련시 황산구리 수용액 중의 Arsenic이 구리의 전해전착에 미치는 영향)

  • Kim, Do-Hyung;Kim, Yong-Hwan;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.103-108
    • /
    • 2009
  • The effect of Arsenic in copper-sulfate solutions during electrorefining of copper was investigated using scanning electron microscopy, X-ray diffraction and cyclic voltammetry analysis. Electrodeposition was carried out using Arsenic, Antimony and bismuth addition to sulfate electrolytes: 45 g/l $Cu^{2+}$ and 170 g/l $H_2SO_4$. Arsenic in sulfate electrolytes changed the morphology and structure of the copper deposits as compared with those obtained from impurity free solutions. When arsenic was present in the sulfate electrolytes, $Cu-3$As intermetallic phase was formed locally on the deposits.

Preparation and Characterization of Ordered Nanostructured Cobalt Films via Lyotropic Liquid Crystal Templated Electrodeposition Method

  • Al-Bishri, Hassan M.;El-Hallag, Ibrahim S.;El-Mossalamy, Elsayed H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3730-3734
    • /
    • 2010
  • A simple, inexpensive and less time consuming electrochemical methods were carried out to prepare ordered mesoporous cobalt films. Ordered mesoporous cobalt films were successfully synthesized by templated electrodepostion of hexagonal $H_1$-e Co ion. The electrodeposited mesopores films were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), low angle X-ray diffraction (XRD) and voltammetric methods. The applicability of thin films as high - performance super capacitors electrode materials is demonstrated electrochemically using cyclic voltammetry (CV) technique.

The Cu-CMP's features regarding the additional volume of oxidizer to W-Slurry (W-slurry의 산화제 첨가량에 따른 Cu-CMP특성)

  • Lee, Woo-Sun;Choi, Gwon-Woo;Seo, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.370-373
    • /
    • 2003
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Chemical-Mechanical Planarization(CMP) of conductors is a key process in Damascene patterning of advanced interconnect structure. The effect of alternative commerical slurries pads, and post-CMP cleaning alternatives are discuess, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. Electroplated copper depostion is a mature process from a historical point of view, but a very young process from a CMP persperspective. While copper electrodepostion has been used and stuidied for dacades, its application to Cu damascene wafer processing is only now ganing complete accptance in the semiconductor industry. The polishing mechanism of Cu CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. however it is important to understand the effect of oxidizer on copper pasivation layer in order to obtain higher removal rate and non-uniformity during Cu-CMP process. In this paper, we investigated the effects of oxidizer on Cu-CMP process regarding the additional volume of oxidizer.

  • PDF

Effect of current density, temperature and electrolyte concentration on Composition of Zn-Ni Electrodeposits (Zn-Ni도금의 합금화에 미치는 전류밀도, 온도와 전해액농도의 영향)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.307-312
    • /
    • 2017
  • In the industry, galvanizing using the principle of sacrificial anode is used Zn-Ni alloy plating was developed as one of the measures to increase the corrosion resistance rather than pure zinc plating. The alloy plating layer has a corrosion resistance of 4-5 times that of the pure zinc plating layer, so that it is applied to automotive parts requiring high corrosion resistance even though the plating cost is high. The amount of Zn-Ni alloy plating solution is a sulfuric acid bath, a chlorinated bath, an alkali bath, and an ammonia bath. Here, the influence of the electrolytic conditions on the composition of the alloy plating in the chloride bath was investigated. The results are explained by the cathode overvoltage and the diffusion coefficient. In general, as the overvoltage of the cathode increases, the concentration polarization becomes more important than the activation polarization. The concentration polarization is determined by element diffusion in the diffusion layer. That is, as the overvoltage of the cathode increases, the Zn content having a large diffusion coefficient increases.

Effect of Electrolytic Condition on Composition of Zn-Co Alloy Plating (Zn-Co 합금도금의 조성에 미치는 전해조건의 영향)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.287-292
    • /
    • 2017
  • The electrodeposition of Zn on the automotive parts has been adapted However, because Zn electrodeposit needs to increase thickness for corrosion protection, it has problem of destruction of electrodeposit Zn-based electrodeposit have teen studied for corrosion protection and decreasing electrodeposit thickness. Especially; Zn-Co electrodeposit have much attention In this study, the Composition of Zn-Co electrodeposit in various manufacturing condition such as temperature, current density and electrolyte content was investigated to understand effect of electrolysis condition on Co content of specimen. The results were explained by cathode overvoltage and diffusion coefficient. As the current density increases, the electrolyte temperature decreases, and as the electrolyte concentration decreases, the overvoltage of the cathode increases. As the overvoltage of the cathode increases, the concentration polarization becomes more important than the activation polarization. Concentration polarization is determined by the diffusion of the mass transfer in the diffusion layer. In a constant concentration polarization, a large amount of elements with a large diffusion coefficient is diffused. That is, as the overvoltage of the cathode increases, the Zn content having a large diffusion coefficient increases.

Electrochromic Properties of Li+-Modified Prussian Blue (리튬이온이 첨가된 프루시안 블루의 전기변색 특성 연구)

  • Yoo, Sung-Jong;Lim, Ju-Wan;Park, Sun-Ha;Won, Ho-Youn;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • The durability problem of Prussian blue in non-aqueous $Li_+$-based electrolytes has been due to the degradation of the Prussian blue electrode matrix during the insertion/extraction processes by $Li_+$. In this work, we designed and synthesised the Prussian blue without reducing the electrochromic performance in non-aqueous $Li_+$-based electrolytes. Prussian blue was electrodeposited on a glass which has ITO coating, and the coating solution is a mixture solution of $FeCl_3\;and\;K_3Fe(CN)_6$ with deionized water added HCl, KCl, and LiCl, respectively. The durability of Prussian blue was evaluated by an in-situ transmittance measurement during a continuous and pulse potential cycling test, and measured by electroactive layer thickness due to evaluating the degradation.