• Title/Summary/Keyword: Electrodeposit

Search Result 67, Processing Time 0.025 seconds

Materials Properties of Nickel Electrodeposits as a Function of the Current Density, Duty Cycle, Temperature and pH

  • Kim, Dong-Jin;Kim, Myung Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.168-172
    • /
    • 2006
  • Alloy 600 having a superior resistance to a corrosion is used as a steam generator tubing in nuclear power plants. In spite of its high corrosion resistance, there are many tubings which experience corrosion problems such as a SCC under the high temperature and high pressure environments of nuclear power plants. The Alloy 600 tubing can be repaired by using a Ni electroplating having an excellent SCC resistance. In order to carry out a successful Ni electrodeposition inside a steam generator tubing, the effects of various parameters on the material properties of the electrodeposit should be elucidated. Hence this work deals with the effects of an applied current density, duty cycle($T_{on}/(T_{on}+T_{off})$) of a pulse current, bath temperature and solution pH on the material properties of Ni electrodeposit obtained from a Ni sulphamate bath by analyzing the current efficiency, potentiodynamic curve, hardness and stress-strain curve. Hardness, YS(yield strength) and TS(tensile strength) decreased whereas the elongation increased as the applied current density increased. This was thought to be by a concentration depletion at the interface of the electrodeposit/solution, and a fractional decrease of the hydrogen reduction reaction. As the duty cycle increased, the hardness, YS and TS decreased while the elongation increased. During an off time at a high duty cycle, the concentration depletion could not be recovered sufficiently enough to induce a coarse grain sized electrodeposit. With an increase of the solution temperature and pH, the YS and TS increased while the elongation decreased. The experimental results of the hardness and the stress-strain curves can be supplemented by the results of the potentiodynamic curve.

Effect of Synthesis Temperature on the Composition of Electrolytic Iron Phosphide

  • Kim, Hokon;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.78-83
    • /
    • 2018
  • In this study, we investigated the composition of an electrolytic Fe phosphide at different synthesis temperatures. We found that the ratio of Fe in the electrodeposit increases with synthesis temperature, whereas the oxygen content introduced into the electrodeposit by the atmospheric oxidation of Fe decreases. The aim of this study was to identify the reason for this effect. For this purpose, the ratio of Fe and P in the electrodeposits prepared at different temperatures was analyzed in depth. In addition, the types and ratios of Fe phosphide phases were considered. It was proved that with increase in temperature, a significant amount of Fe reacted with P to form Fe phosphide phases, and consequently, the amount of residual pure Fe that would react directly with oxygen decreased.

The Effect of polyethlenglycol on Electrocrystallization of zine Coat (아연전기도금의 존착성에 미치는 폴리에탈렌글리콜의 영향)

  • 김현태;정원섭;조남웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.2
    • /
    • pp.128-135
    • /
    • 1997
  • The effect of the polyethyledglycol(PEG) on the surface morphology and crystal orientation of electrodeposited zinc from a chloride (1.5M Zinc+7.0M chloriode) have been studied by means of electrochemical methodes, scanning electron microscopy, surface appearance measurement and X-ray diffraction patterns. The resistance of electrodeposit increased, whereas the evolution of hydrogen decreased with incrasing of molecular weight of the PEG. Large grains of electrodeposit were obtained from bath in the absence of organid additive. When the PEG was added, fine grained crystals were observed and the surface roughness was relatively small, but surface appearance deteriorated. The preferred orientation with a(101) plane parallel to the surface was obtained from the PEG addited bath.

  • PDF

Material Properties of Ni-P-B Electrodeposits for Steam Generator Tube Repair

  • Kim, Dong Jin;Seo, Moo Hong;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.112-117
    • /
    • 2004
  • This work investigated the material properties of Ni-P-B alloy electrodeposits obtained from a Ni sulfamate bath as a function of the contents of the P and B sources($H_3PO_3$ and dimethyl amine borane complex(DMAB), respectively) with/without additives. Chemical composition, residual stress, microstructure and micro hardness were investigated using ICP(inductively coupled plasma) mass spectrometer, flexible strip, XRD, TEM and micro Vickers hardness tester, respectively. From the results of the compositional analysis, it was observed that P and B are incorporated competitively during the electrodeposition and the sulfur from the additive is codeposited into the electrodeposit. The measured residual stress value increased in the order of Ni, Ni-P, Ni-B and Ni-P-B electrodeposits indicating that boron affects the residual tensile stress greater than phosphorus. As the contents of the alloying element sources of P and B increased, crystallinity and the grain size of the electrodeposit decreased. The effect of boron on crystallinity and grain size was also relatively larger than the phosphorus. It can be explained that the boron with a smaller atomic radius contributes to the increase of residual stress in the tensile direction and the larger restraining force against the grain growth more significantly than the phosphorus with a larger atomic radius. Introduction of an additive into the bath retarded crystallization and grain growth, which may be attributed to the change of the grain growth kinetics induced by the additive adsorbed on the substrate and electrodeposit surfaces during electrodeposition.

MATERIAL RELIABILITY OF Ni ALLOY ELECTRODEPOSITION FOR STEAM GENERATOR TUBE REPAIR

  • Kim, Dong-Jin;Kim, Myong-Jin;Kim, Joung-Soo;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.231-236
    • /
    • 2007
  • Due to the occasional occurrences of stress corrosion cracking(SCC) in steam generator tubing(Alloy 600), degraded tubes are removed from service by plugging or are repaired for re-use. Since electrodeposition inside a tube does not entail parent tube deformation, residual stress in the tube can be minimized. In this work, tube restoration via electrodeposition inside a steam generator tubing was performed after developing the following: an anode probe to be installed inside a tube, a degreasing condition to remove dirt and grease, an activation condition for surface oxide elimination, a tightly adhered strike layer forming condition between the electro forming layer and the Alloy 600 tube, and the condition for an electroforming layer. The reliability of the electrodeposited material, with a variation of material properties, was evaluated as a function of the electrodeposit position in the vertical direction of a tube using the developed anode. It has been noted that the variation of the material properties along the electrodeposit length was acceptable in a process margin. To improve the reliability of a material property, the causes of the variation occurrence were presumed, and an attempt to minimize the variation has been made. A Ni alloy electrodeposition process is suggested as a primary water stress corrosion cracking(PWSCC) mitigation method for various components, including steam generator tubes. The Ni alloy electrodeposit formed inside a tube by using the installed assembly shows proper material properties as well as an excellent SCC resistance.