Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.1.78

Effect of Synthesis Temperature on the Composition of Electrolytic Iron Phosphide  

Kim, Hokon (School of Materials Science and Engineering, Pusan National University)
Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.1, 2018 , pp. 78-83 More about this Journal
Abstract
In this study, we investigated the composition of an electrolytic Fe phosphide at different synthesis temperatures. We found that the ratio of Fe in the electrodeposit increases with synthesis temperature, whereas the oxygen content introduced into the electrodeposit by the atmospheric oxidation of Fe decreases. The aim of this study was to identify the reason for this effect. For this purpose, the ratio of Fe and P in the electrodeposits prepared at different temperatures was analyzed in depth. In addition, the types and ratios of Fe phosphide phases were considered. It was proved that with increase in temperature, a significant amount of Fe reacted with P to form Fe phosphide phases, and consequently, the amount of residual pure Fe that would react directly with oxygen decreased.
Keywords
Fe phosphide; Electrodeposition; Temperature; Composition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. D. Mayer, W. M. Jarrell, Wat. Res., 2000, 34(16), 3949-3956.   DOI
2 S. J. Hearne, J. A. Floro, J. Appl. Phys., 2005, 97(1), 014901.   DOI
3 W. Temesghen, P. Sherwood, Anal. Bioanal. Chem., 2002, 373(7), 601-608.   DOI
4 H. Liu, D. Xu, A. Q. Dao, G. Zhang, Y. Lv, H. Liu, Corros. Sci., 2015, 101, 84-93.   DOI
5 Y. Wang, L. Zhang, H. Li, Y. Wang, L. Jiao, H. Yuan, L. Chen, H. Tang, X. Yang, J. Power Sources, 2014, 253, 360-365.   DOI
6 J. Kibsgaard, C. Tsai, K. Chan, J. D. Benck, J. K. Norskov, F. Abild-Pedersen, T. F. Jaramillo, Energy Environ. Sci., 2015, 8(10), 3022-3029.   DOI
7 M. J. Carmezim, A. M. Simoes, M. F. Montemor, M. D. C. Belo, Corros. Sci., 2005, 47(3), 581-591.   DOI
8 F. G. Ferris, K. Tazaki, W. S. Fyfe, Chem. Geol., 1989, 74(3-4), 321-330.   DOI
9 R. S. Dutta, G. K. Dey, A. Lobo, R. Purandare, S. K. Kulkarni, Metall. Mater. Trans. A, 2002, 33(5), 1437-1447.   DOI
10 N. Luo, T. Chen, K. Liu, Y. Shen, Mendeleev Commun., 2013, 23(3), 153-154.   DOI
11 V. Balouria, A. Kumar, S. Samanta, A. Singh, A. K. Debnath, A. Mahajan, R. K. Bedi, D. K. Aswal, S. K. Gupta, Sens. Actuators, B, 2013, 181, 471-478.   DOI
12 J. Yang, Y. Zhang, C. Sun, H. Liu, L. Li, W. Si, W. Huang, Q. Yan, X. Dong, Nano Res., 2016, 9(3), 612-621.   DOI
13 H. Yang, Y. Zhang, F. Hu, Q. Wang, Nano Lett., 2015, 15(11), 7616-7620.   DOI
14 Y. Y. Dou, G. R. Li, J. Song and X. P. Gao, Phys. Chem. Chem. Phys., 2012, 14(4), 1339-1342.   DOI
15 F. Dubecky, P. Bohacek, B. Zatko, M. Sekacova, J. Huran, V. Smatko, R. Fornari, E. Gombia, R. Mosca, P.G. Pelfer, Nucl. Instrum. Methods Phys. Res., Sect. A, 2004, 531(1), 181-191.   DOI
16 M. Palaniappa, S.K. Seshadri, Wear, 2008, 265(5), 735-740.   DOI
17 W. Li, H. Li, Z. Lu, L. Gan, L. Ke, T. Zhai, H. Zhou, Energy Environ. Sci., 2015, 8(12), 3629-3636.   DOI
18 H. Pfeiffer, F. Tancret, T. Brousse, Electrochim. Acta, 2005, 50(24), 4763-4770.   DOI
19 K. Yan, Y. Li, X. Zhang, X. Yang, N. Zhang, J. Zheng, B. Chen, K. J. Smith, Int. J. Hydrogen Energy, 2015, 40(46), 16137-16146.   DOI
20 A. P. Leitner, D. E. Schipper, J. H. Chen, A. C. Colson, I. Rusakova, B. K. Rai, E. Morosan, K. H. Whitmire, Chem. Eur. J., 2017, 23(23), 5565-5572.   DOI
21 T. R. Hellstern, J. D. Benck, J. Kibsgaard, C. Hahn, T. F. Jaramillo, Adv. Energy Mater., 2016, 6, 1501758.   DOI
22 Y. Lu, J.K. Liu, X.Y. Liu, S. Huang, T.Q. Wang, X.L. Wang, C.D. Gu, J.P. Tu, S.X. Mao, CrystEngComm., 2013, 15(35), 7071-7079.   DOI
23 M. D. Hossain, C. M. Mustafa, M. M. Islam, J. Electrochem. Sci. Technol., 2017, 8(3), 197-205.   DOI
24 I. T. Park, H. C. Shin, Electrochem. Commun., 2013, 33, 102-106.   DOI
25 S. Baken, P. Salaets, N. Desmet, P. Seuntjens, E. Vanlierde, E. Smolders, Environ. Sci. Technol., 2015, 49(5), 2886-2894.   DOI
26 K. Aso, A. Hayashi, M. Tatsumisago, Inorg. Chem., 2011, 50(21), 10820-10824.   DOI