• 제목/요약/키워드: Electrode systems

검색결과 504건 처리시간 0.033초

직류 접지극의 전식보호 방법 연구 (Research on Protection Method for Ground Electrode of DC Systems from Corrosion)

  • 정우용;김효성
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.90-95
    • /
    • 2021
  • In contrast to AC grounding systems, the ground electrode in DC systems continuously maintains positive or negative polarity. Ground electrodes with (+) polarity proceeds by oxidation reaction. Thus, the DC current should flow opposite to the polarity of the leakage current flowing through the (+) ground electrode by using a compensation electrode, and the current flowing through the (+) ground electrode can be 0A. However, according to protecting the (+) ground electrode, the compensation electrode corrodes and gets damaged. Thus, the (+) ground electrode must be protected from corrosion, and the service life of the compensation electrode must be extended. As an alternative, the average value of the current flowing through the compensation electrode should be equal with the value of the leakage current flowing through the (+) ground electrode by using the square waveform. Throughout the experiment, the degree of corrosion on the compensation electrode is analyzed by the frequency of the compensation electrode for a certain time. In the experiment, the frequencies of the square waveform are considered for 0.1, 1, 10, 20, 50, 100 Hz, and 1 kHz. Through experiments and analysis, the optimal frequency for reducing the electrolytic damage of the (+) electrode and compensation electrode in an LVDC grounding environment is determined.

저항형 고온초전도 한류기용 절연체의 절연 특성 (Breakdown Characteristics of Insulators for a Resistor Type HTS Fault Current Limiter)

  • 백승명;류엔반둥;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권1호
    • /
    • pp.48-52
    • /
    • 2004
  • Breakdown characteristics of insulator-liquid nitrogen ($LN_2$) composite insulation for resistor type High $T_c$/ superconducting fault current limiter (HTSFCL) under ac and impulse voltage in $LN_2$ has been studied using model electrode systems. Electrodes for model electrode systems were made of SUS 304 contacted fiberglass reinforced plastic (FRP) and Au coated sapphire. The breakdown characteristics of model electrode systems were investigated experimentally for FRP thickness ranging from 1 mm to 5 mm. surface distance ranging from 2.5 mm to 7 mm and electrode gap ranging from 1 to 5 mm. The experimental data suggested that the breakdown voltage of model electrode systems in $LN_2$ is highly dependent on the surface distance, electrode gap as well as on the FRP thickness. Also, we had observed discharge traces and puncture due to high-voltage 60-Hz AC stress.

이중 주파수 전원의 용량성 결합 플라즈마 식각장비에서 전극하전에 의한 입사이온 에너지분포 변화연구 (Electrode Charging Effect on Ion Energy Distribution of Dual-Frequency Driven Capacitively Coupled Plasma Etcher)

  • 최명선;장윤창;이석환;김곤호
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.39-43
    • /
    • 2014
  • The effect of electrode charging on the ion energy distribution (IED) was investigated in the dual-frequency capacitively coupled plasma source which was powered of 100 MHz RF at the top electrode and 400 kHz bias on the bottom electrode. The charging property was analyzed with the distortion of the measured current and voltage waveforms. The capacitance and the resistance of electrode sheath can change the property of ion and electron charging on the electrode so it is sensitive to the plasma density which is controlled by the main power. The ion energy distribution was estimated by equivalent circuit model, being compared with the measured distribution obtained from the ion energy analyzer. Results show that the low frequency bias power changes effectively the low energy population of ion in the energy distribution.

Fabrication of Electrochemical Sensor with Tunable Electrode Distance

  • Yi, Yu-Heon;Park, Je-Kyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권1호
    • /
    • pp.30-37
    • /
    • 2005
  • We present an air bridge type electrode system with tunable electrode distance for detecting electroactive biomolecules. It is known that the narrower gap between electrode fingers, the higher sensitivity in IDA (interdigitated array) electrode. In previous researches on IDA electrode, narrower patterning required much precise and expensive equipment as the gap goes down to nanometer scale. In this paper, an improved method is suggested to replace nano gap pattering with downsizing electrode distance and showed that the patterning can be replaced by thickness control using metal deposition methods, such as electroplating or metal sputtering. The air bridge type electrode was completed by the following procedures: gold patterning for lower electrode, copper electroplating, gold deposition for upper electrode, photoresist patterning for gold film support, and copper etching for space formation. The thickness of copper electroplating is the distance between upper and lower electrodes. Because the growth rate of electroplating is $0.5{\mu}m\;min^{-1}$, the distance is tunable up to hundreds of nanometers. Completed electrodes on the same wafer had $5{\mu}m$ electrode distance. The gaps between fingers are 10, 20, 30, and $40{\mu}m$ and the widths of fingers are 10, 20, 30, 40, and $50{\mu}m$. The air bridge type electrode system showed better sensitivity than planar electrode.

염료감응형 태양전지의 탄소나노튜브 상대전극의 광투과도와 전기화학적 특성이 에너지 변환 효율에 미치는 영향 (Effect of Electrochemical Properties and Optical Transmittance of Carbon Nanotubes Counter Electrodes on the Energy Conversion Efficiency of Dye-sensitized Solar Cells)

  • 한영문;황숙현;강명훈;김영주;김현국;김상효;배효준;최현광;전민현
    • 한국전기전자재료학회논문지
    • /
    • 제24권4호
    • /
    • pp.333-339
    • /
    • 2011
  • In this work, electrochemical characteristics and optical transmittance of carbon nanotubes (CNTs) counter electrodes which had different amount of CNTs in CNTs slurries were analyzed. Two-step heat treatment processes were applied to achieve well-fabricated CNTs electrode. Three sets of CNTs electrodes and dye-sensitized solar cells (DSSCs) with CNTs counter electrodes were prepared. As the amount of CNTs increased, sheet resistance of CNTs electrode decreased. CNTs electrode with low sheet resistance had low electrochemical impedance and fast redox reaction. On the other hand, in case of CNTs counter electrode with low density of CNTs, performance of the dye-sensitized solar cell was improved due to its high optical transmittance. We found that the transmittance of CNTs counter electrode influence the performance of dye-sensitized solar cells.

설계변수에 따른 진공인터럽터용 종자계방식 전극의 아크특성에 관한 연구 (A Study on the Arc Characteristics of Axial Magnetic Field Type Electrode for Vacuum interrupter by Desing Parameters)

  • 김성일;박흥태;안희일;서정민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.672-674
    • /
    • 2001
  • Axial magnetic field(AMF) type electrode can increase the interrupting capability of vacuum interrupters. But, this interrupting capability vary with design parameters such as shape of electrode, slits of contact, material of contact and so on. In this paper, shown arc characteristics of unipolar axial magnetic field type electrode for vacuum interrupter by design parameters such as shape of contact slits and diameter of contact. And, confirmed vacuum arc configuration by individual design parameter using high speed camera.

  • PDF

Surface Plasmon Resonance Effect of Ag Layer Inserted in a Highly Flexible Transparent IZTO/Ag/IZTO Multilayer Electrode for Flexible Organic Light Emitting Diodes

  • Park, Ho-Kyun;Jun, Nam-Ho;Choi, Kwang-Hyuk;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.601-604
    • /
    • 2008
  • We report on the Ag thickness effect on the electrical and optical properties of indium zinc tin oxide (IZTO)-Ag-IZTO multilayer electrode grown on a PET substrate and the surface plasmon effect of Ag layer on the optical properties of IZTO-Ag-IZTO electrode. Using an IZTO-Ag-IZTO multilayer with a total thickness below ~80 nm, we can obtain high-quality flexible electrode with very low sheet resistance, high transmittance, high work function and superior flexibility.

  • PDF

반응성 이온 식각법에 의해 제작된 탄소나노튜브 전극의 전기화학적 특성 (Electrochemical Properties of Individual Carbon Nanotube Fabricated by Reactive Ion Etching)

  • 황숙현;최현광;김상효;한영문;전민현
    • 한국재료학회지
    • /
    • 제21권2호
    • /
    • pp.89-94
    • /
    • 2011
  • In this work, fabrication and electrochemical analysis of an individual multi-walled carbon nanotube (MWNT) electrode are carried out to confirm the applicability of electrochemical sensing. The reactive ion etching (RIE) process is performed to obtain sensitive MWNT electrodes. In order to characterize the electrochemical properties, an individual MWNT is cut by RIE under oxygen atmosphere into two segments with a small gap: one segment is applied to the working electrode and the other is used as a counter electrode. Electrical contacts are provided by nanolithography to the two MWNT electrodes. Dopamine is specially selected as an analytical molecule for electrochemical detection using the MWNT electrode. Using a quasi-Ag/AgCl reference electrode, which was fabricated by us, the nanoelectrodes are subjected to cyclic voltammetry inside a $2{\mu}L$ droplet of dopamine solution. In the experiment, RIE power is found to be a more effective parameter to cut an individual MWNT and to generate "broken" open state, which shows good electrochemical performance, at the end of the MWNT segments. It is found that the pico-molar level concentration of analytical molecules can be determined by an MWNT electrode. We believe that the MWNT electrode fabricated and treated by RIE has the potential for use in high-sensitivity electrochemical measurement and that the proposed scheme can contribute to device miniaturization.

Relative Measurement of Differential Electrode Impedance for Contact Monitoring in a Biopotential Amplifier

  • Yoo, Sun-K.
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.601-605
    • /
    • 2007
  • In this paper, we propose a simple and relative electrode contact monitoring method. By exploiting the power line interference, which is regarded as one of the worst noise sources for bio-potential measurement, the relative difference in electrode impedance can be measured without a current or voltage source. Substantial benefits, including no extra circuit components, no degradation of the body potential driving circuit, and no electrical safety problem, can be achieved using this method. Furthermore, this method can be applied to multi-channel isolated bio-potential measurement systems and home health care devices under a steady measuring environment.

선대 선 전극방식의 대기압 아크억제 대책 및 Metaloxide 제거에 관한 연구 (The Study on Arc Suppression of Line-to-Line Electrodes in Air and Removal of the Metaloxide)

  • 정종한;김문환
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권5호
    • /
    • pp.264-267
    • /
    • 2004
  • Recently the pulsed power systems have been widely used in many fields such as E/P(Electrostatic Precipitator), DeNOx/DeSOx power systems, ozone generators and power sources of the laser beam. In this paper, we studied various electrical characteristics for arc suppression of line-to-line electrodes in air and removal of the metaloxide using our pulsed power system. To obtain high efficiency of the pulsed power system, we repeatedly experimented and tested their characteristics. by adjusting electrode length of the load. As a result, when the value of the electrode length and pulse repetition rate were changed at the load, the value of the arc voltage changed at the electrode load. In conclusion, we controlled arc voltage of the load by ,changing electrode length and pulse repetition rate. Also. we stydied removal area of the metaloxide using area discharge according to pulse repetition rate.