• Title/Summary/Keyword: Electrode system for hydrogen generation

Search Result 18, Processing Time 0.023 seconds

Development of a Welding Machine System Using Brown Gas by Improved Water Electrolyzation

  • Lee Yong-Kyun;Lee Sang-yong;Jeong Byung-Hwan;Mok Hyung-Soo;Choe Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.305-311
    • /
    • 2005
  • Throughout the world, studies on the water energization are currently under way. Of those, Brown gas, which is generated through the electrolyzation of water and is a mixed gas of the constant volume of 2 parts hydrogen to 1 part oxygen, has better characteristics in terms of economy, energy efficiency, and environmental affinity than those of acetylene gas and LPG (Liquefied Petroleum Gas) used for existing welding machines. This paper analyzes the characteristics of Brown gas and presents methods for increasing the generating efficiency of Brown gas by designing a power supply to deliver power to a water-electrolytic cell and designing a cylindrical electrode to improve the efficiency of the electrolyzer needed for water electrolyzation. Based on the above the methods, a welding machine using Brown gas is developed. And the generation efficiency of Brown gas is measured tinder different conditions (duty ratio, frequency and amplitude) of supplied power.

Electricity Generation Using Cyanobacteria Synechocystis PCC 6803 in Photosynthetic Bio-Electrochemical Fuel Cell (남조류 Synechocystis PCC 6803을 이용한 생물전기화학적 물분해 전기 생산)

  • Kim, Min-Jin;Oh, You-Kwan;Kim, Mi-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.6
    • /
    • pp.529-536
    • /
    • 2008
  • Cyanobacteria Synechocystis PCC 6803 or the extracted thylakoid membrane from this strain was appled to photosynthetic bio-electrochemical fuel cell(PBEFC) for the production of hydrogen under the illumination of 48Klux using halogen lamp. PBEFC was composed of anode, cathode and membrane between them. Electrode material was carbon paper while electron mediator and receptor were added phenazine methosulfate(PMS) and potassium ferricyanide respectively. When water and 50 mM tricine buffer and $300{\mu}M$ PMS were added to the anode under the light condition, PBEFC produced the current density $4.4{\times}10^{-5}\;mA/cm^2$, $1.4{\times}10^{-4}\;mA/cm^2$ and $2.4{\times}10^{-4}\;mA/cm^2$, respectively. And the addition of the thylakoid membrane to the system increased current density to $1.3{\times}10^{-3}\;mA/cm^2$. Two times increase of the thylakoid membrane into the anode doubled the current density to $2.6{\times}10^{-3}\;mA/cm^2$. But the current density was not increased proportionally to the amount of thylakoid membrane increased. The system was unstable to measure the electricity output due to the foam production in the anode. Addition of triton X-100 and tween 80 stabilized the system to measure the electricity output but the current density was not increased higher than $8.4{\times}10^{-4}\;mA/cm^2$ and $2.3{\times}10^{-3}\;mA/cm^2$. When the thylakoid membrane was substituted to Synechocystis PCC 6803 cells of four-day culture which has chlorophyll contents $20.5{\mu}g/m{\ell}$, maximum current density was $1.3{\times}10^{-3}\;mA/cm^2$ with $1\;k{\Omega}$ resistance.

Analysis of BNNT(Boron Nitride Nano Tube) synthesis by using Ar/N2/H2 60KW RF ICP plasma in the difference of working pressure and H2 flow rate

  • Cho, I Hyun;Yoo, Hee Il;Kim, Ho Seok;Moon, Se Youn;Cho, Hyun Jin;Kim, Myung Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.179-179
    • /
    • 2016
  • A radio-frequency (RF) Inductively Coupled Plasma (ICP) torch system was used for boron-nitride nano-tube (BNNT) synthesis. Because of electrodeless plasma generation, no electrode pollution and effective heating transfer during nano-material synthesis can be realized. For stable plasma generation, argon and nitrogen gases were injected with 60 kW grid power in the difference pressure from 200 Torr to 630 Torr. Varying hydrogen gas flow rate from 0 to 20 slpm, the electrical and optical plasma properties were investigated. Through the spectroscopic analysis of atomic argon line, hydrogen line and nitrogen molecular band, we investigated the plasma electron excitation temperature, gas temperature and electron density. Based on the plasma characterization, we performed the synthesis of BNNT by inserting 0.5~1 um hexagonal-boron nitride (h-BN) powder into the plasma. We analysis the structure characterization of BNNT by SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy), also grasp the ingredient of BNNT by EELS (Electron Energy Loss Spectroscopy) and Raman spectroscopy. We treated bundles of BNNT with the atmospheric pressure plasma, so that we grow the surface morphology in the water attachment of BNNT. We reduce the advancing contact angle to purity bundles of BNNT.

  • PDF

Measurement and Analysis of Coal Conversion Efficiency for a Coal Recirculating Fuel Cell Simulator (석탄순환형 연료전지 모사시스템용 석탄전환율 측정 및 분석법개발에 관한 연구)

  • Lee, Sangcho;Kim, Chihwan;Hwang, Munkyeong;kim, Minseong;Kim, Kyubo;Jeon, Chunghwan;Song, Juhun
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.503-512
    • /
    • 2012
  • There is a new power generation system such as direct coal fuel cell (DCFC) with a solid oxide electrolyte operated at relatively high temperature. In the system, it is of great importance to feed coal continuously into anodic electrode surface for its better contact, otherwise it would reduce electrochemical conversion of coal. For that purpose, it is required to improve the electrochemical conversion efficiency by using either rigorous mixing condition such as fluidized bed condition or just by recirculating coal particle itself successively into the reaction zone of the system. In this preliminary study, we followed the second approach to investigate how significantly particle recycle would affect the coal conversion efficiency. As a first phase, coal conversion was analyzed and evaluated from the thermochemical reaction of carbon with air under particle recirculating condition. The coal conversion efficiency was obtained from raw data measured by two different techniques. Effects of temperature and fuel properties on the coal conversion are specifically examined from the thermochemical reaction.

Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis (음이온교환막 수전해 촉매기술 동향)

  • Kim, Jiyoung;Lee, Kiyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.69-80
    • /
    • 2022
  • The anion exchange membrane (AEM) water electrolysis for high purity hydrogen production is attracting attention as a next-generation green hydrogen production technology by using inexpensive non-noble metal-based catalysts instead of conventional precious metal catalysts used in proton exchange membrane (PEM) water electrolysis systems. However, since AEM water electrolysis technology is in the early stages of development, it is necessary to develop research on AEM, ionomers, electrode supports and catalysts, which are key elements of AEM water electrolysis. Among them, current research in the field of catalysts is being studied to apply a previously developed half-cell catalyst for alkali to the AEM system, and the applied catalyst has disadvantages of low activity and durability. Therefore, this review presented a catalyst synthesis technique that promoted oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) using a non-noble metal-based catalyst in an alkaline medium.

Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC) (일체형 재생 연료전지(URFC)용 고분자 전해질 막의 이해)

  • Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • A unitized regenerative fuel cell (URFC) as a next-generation fuel cell technology was considered in the study. URFC is a mandatory technology for the completion of the hybrid system with the fuel cell and the renewable energy sources, and it can be expected as a new technology for the realization of hydrogen economy society in the $21^{st}$ century. Specifically, the recent research data and results concerning the polymer electrolyte membrane for the URFC technology were summarized in the study. The prime requirements of polymer electrolyte membrane for the URFC applications are high proton conductivity, dimensional stability, mechanical strength, and interfacial stability with the electrode binder. Based on the performance of the polymer electrolyte membrane, the URFC technology combining the systems for the production, storage, utilization of hydrogen can be a new research area in the development of an advanced technology concerning with renewable energy such as fuel cell, solar cell, and wind power.

Preparation of Si/C Anode with PVA Nanocomposite for Lithium-ion Battery Using Electrospinning Method

  • Choi, Sung Il;Lee, Ye Min;Jeong, Hui Cheol;Jung, Eun-Jin;Lee, Mi Sun;Kim, Jinyoung;Kim, Yong Ha;Won, Yong Sun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.139-142
    • /
    • 2018
  • Silicon (Si) is a promising anode material for next-generation lithium ion batteries (LIBs) because of its high capacity of 4,200 mAh/g ($Li_{4.4}Si$ phase). However, the large volume expansion of Si during lithiation leads to electrical failure of electrode and rapid capacity decrease. Generally, a binder is homogeneously mixed with active materials to maintain electrical contact, so that Si needs a particular binding system due to its large volume expansion. Polyvinyl alcohol (PVA) is known to form a hydrogen bond with partially hydrolyzed silicon oxide layer on Si nanoparticles. However, the decrease of its cohesiveness followed by the repeated volume change of Si still remains unsolved. To overcome this problem, we have introduced the electrospinning method to weave active materials in a stable nanofibrous PVA structure, where stresses from the large volume change of Si can be contained. We have confirmed that the capacity retention of Si-based LIBs using electrospun PVA matrix is higher compared to the conservative method (only dissolving in the slurry); the $25^{th}$ cycle capacity retention ratio based on the $2^{nd}$ cycle was 37% for the electrode with electrospun PVA matrix, compared to 27% and 8% for the electrodes with PVdF and PVA binders.

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF