• Title/Summary/Keyword: Electrode performance.

Search Result 1,665, Processing Time 0.025 seconds

Effects of electrode fabrication conditions on performance characteristics of phosphoric acid fuel cell (인산형 연료전지 성능 특성에 미치는 전극 제조 조건의 영향)

  • 송락현;김창수;신동렬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.224-229
    • /
    • 1996
  • Performance characteristics of single cell in phosphoric acid fuel cell were studied for various electrode fabrication parameters such as teflon content, electrode structure, thickness of electrocatalyst layer, platinum content and electrode area. The performance of single cell was decided from the measured voltage-current through a load change. The electrode of 40wt.% teflon exhibited high initial performance of single cell, but in the long term operation, the cell performance of 45 wt.% teflon was better. Also the single cell appeared good performance in case of electrodes with duplicate structure, thin electrocatalyst in thickness, more platinum content, and small area. These results of cell performance were discussed as related to the electrolyte flooding, formation of 3 phase boundary area, internal resistance of electrode, and microstructure of electrode.

  • PDF

Comparison of Electrode Backing Materials for Polymer Electrolyte Membrane Fuel Cells

  • Sasikumar, G.;Ryu, H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.183-186
    • /
    • 2003
  • In a PEM fuel cell electrode, backing layer has tremendous impact on electrode performance. The backing layer provides structural support for the porous electrode, distributes the reactants to the other layers and acts as a current collector. It has major influence on the water management in a PEM fuel cell. Selection of suitable backing layer material for the fabrication of electrode is thus very important to achieve high performance. In this paper we have compared the performance of PEM fuel cell electrodes fabricated using carbon paper EC-TPI-060T, carbon cloth EC-CCI-060T, (ElectroChem Inc.USA) and Carbon cloth from Textron, USA (CPW 003 grade). Mass transport problem was observed under non-pressurized condition, at high current densities, in the caie of EC-CC1-060T carbon cloth electrode (at $50^{\circ}C$), due to its higher thickness. The performance of carbon paper electrode was higher than EC-CCI-060T carbon cloth electrode. The performance of Textron carbon cloth was comparable to EC-TPI -060T carbon paper.

Improvement of Electrochemical Performance of Lithium-ion Secondary Batteries using Double-Layered Thick Cathode Electrodes

  • Phiri, Isheunesu;Kim, Jeong-Tae;Kennedy, Ssendagire;Ravi, Muchakayala;Lee, Yong Min;Ryou, Myung-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.32-41
    • /
    • 2022
  • Various steps in the electrode production process, such as slurry mixing, slurry coating, drying, and calendaring, directly affect the quality and, consequently, mechanical properties and electrochemical performance of electrodes. Herein, a new method of slurry coating is developed: Double-coated electrode. Contrary to single-coated electrode, the cathode is prepared by double coating, wherein each coat is of half the total loading mass of the single-coated electrode. Each coat is dried and calendared. It is found that the double-coated electrode possesses more uniform pore distribution and higher electrode density and allows lesser extent of particle segregation than the single-coated electrode. Consequently, the double-coated electrode exhibits higher adhesion strength (74.7 N m-1) than the single-coated electrode (57.8 N m-1). Moreover, the double-coated electrode exhibits lower electric resistance (0.152 Ω cm-2) than the single-coated electrode (0.177 Ω cm-2). Compared to the single-coated electrode, the double-coated electrode displays higher electrochemical performance by exhibiting better rate capability, especially at higher C rates, and higher long-term cycling performance. Despite its simplicity, the proposed method allows effective electrode preparation by facilitating high electrochemical performance and is applicable for the large-scale production of high-energy-density electrodes.

Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte

  • Yang, Inchan;Kwon, Soon Hyung;Kim, Bum-Soo;Kim, Sang-Gil;Lee, Byung-Jun;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.132-137
    • /
    • 2015
  • The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.

Influence of the Catalyst Composition on Electrode Performance for Polymer Electrolyte Membrane Fuel Cells (촉매조성이 PEM용 연료전지의 전극특성에 미치는 영향)

  • 임재욱;최대규;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.43-48
    • /
    • 2002
  • In this study, high performance electrode catalyst was developed in fabrication of membrane electrode assembly for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). The I-V characteristics were measured to evaluate the influence of Nafion solution and Pt loading amount in the catalyst composition. The electrode characteristics were also investigated with respect to temperature change. The electrode performance was optimized at Nafion 5 wt% and 0.5 mg Pt/$\textrm{cm}^2$ content. The increase in the concentration of Nafion solution resulted in the decrease in electrode performance. At $80^{\circ}C$ of unit cell, I-V characteristics excelled those obtained at lower temperature. There was no difference in performance at low current density, but the improvement of voltage value in higher temperature could be found at high current density.

  • PDF

Composited Conductive Materials for Enhancing the Ultrafast Performance for Anode in Lithium-Ion Battery (리튬이온전지 음극의 고속 성능 향상을 위한 도전재 복합화)

  • Ki-Wook, Sung;Hyo-Jin, Ahn
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.474-480
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are powerful energy storage devices with several advantages, including high energy density, large voltage window, high cycling stability, and eco-friendliness. However, demand for ultrafast charge/discharge performance is increasing, and many improvements are needed in the electrode which contains the carbon-based active material. Among LIB electrode components, the conductive additive plays an important role, connecting the active materials and enhancing charge transfer within the electrode. This impacts electrical and ionic conductivity, electrical resistance, and the density of the electrode. Therefore, to increase ultrafast cycling performance by enhancing the electrical conductivity and density of the electrode, we complexed Ketjen black and graphene and applied conductive agents. This electrode, with the composite conductive additives, exhibited high electrical conductivity (12.11 S/cm), excellent high-rate performance (28.6 mAh/g at current density of 3,000 mA/g), and great long-term cycling stability at high current density (88.7 % after 500 cycles at current density of 3,000 mA/g). This excellent high-rate performance with cycling stability is attributed to the increased electrical conductivity, due to the increased amount of graphene, which has high intrinsic electrical conductivity, and the high density of the electrode.

Enhanced Cycle Performance of Bi-layer Structured LMO-NCM Positive Electrode at Elevated Temperature (겹층구조의 LMO-NCM 복합양극을 통한 고온 사이클 수명개선 연구)

  • Yoo, Seong Tae;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • Spinel LiMn2O4 (LMO) and layered LiNi0.5Co0.2Mn0.3O2 (NCM) are widely used as positive electrode materials for lithium-ion batteries. LMO and NCM positive electrode materials have a complementary properties. LMO has low cost and high safety and NCM materials show a relatively high specific capacity and better cycle life even at elevated temperature. Therefore, the LMO and NCM active materials are blended and used as a positive electrode in large-size batteries for electric vehicles (xEV). In this study, the cycle performance of a blended electrode prepared by simply mixing LMO and NCM and a bi-layer electrode in which two electrode layers aree sequentially coated are compared. The bi-layer electrode prepared by composing the same ratio of both active materials has similar capacity and cycle performance to the blend electrode. However, the LN electrode coated with LMO first and then NCM is the best in the full cell cycle performance at elevated temperature, and the NL electrode, in which NCM is first coated with LMO has a faster capacity degradation than the blended electrode because LMO is mainly located on the top of the electrode adjacent to electrolyte and graphite negative electrode. Also, the LSTA (linear sweep thermmametry) analysis results show that the LN bi-layer electrode in which the LMO is located inside the electrode has good thermal stability.

Effect of Adhesion Strength Between Flexible Substrates and Electrodes on the Durability of Electrodes (유연 기판과 전극 사이의 접합력이 전극의 내구성에 미치는 영향)

  • Doyeon Im;Byoung-Joon Kim;Geon Hwee Kim;Taechang An
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.86-92
    • /
    • 2024
  • Flexible electronic devices are exposed to repeated mechanical deformation; therefore, electrode performance is an important element. Recently, a new technology has been developed to improve the adhesion strength between polymer substrates and metal thin films through the cross-linking reaction of bovine serum albumin (BSA) bioconjugation proteins; however, additional performance evaluation as an electrode is necessary. Therefore, in this study, we investigated the effect of adhesive strength between a flexible substrate and a metal thin film on the performance of a flexible electrode. Cracks and changes in the electrical resistance of the electrode surface were observed through outer bending fatigue tests and tensile tests. As a result of a bending fatigue test of 50,000 cycles and a tensile test at 10% strain, the change in the electrical resistance of the flexible electrode with a high adhesion strength was less than 40%, and only a few microcracks were formed on the surface; thus, the electrical performance did not significantly deteriorate. Through this study, the relationship between the adhesion strength and electrical performance was identified. This study will provide useful information for analyzing the performance of flexible electrodes in the commercialization of flexible electronic devices in the future.

Development of High Performance MEA by Decal Method for PEM Fuel Cell (데칼 공정을 적용한 고성능 MEA 개발)

  • Lee, Ki-Sub;Lee, Jae-Seung;Kwon, Nak-Hyun;Hwang, In-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.585-591
    • /
    • 2011
  • This study has focused on the development of high performance membrane-electrode assemblies (MEAs) fabricated by decal method for proton exchange membrane fuel cell (PEMFC). To study the effect of ionomer contents on performance, we fabricated MEAs with several electrodes which were prepared by varying the quantity of ionomer from 20 wt.% to 45 wt.% in catalyst layer. The MEA performance was obtained through single cell test. The MEA prepared from electrode with 25wt.% of ionomer showed the best performance. We evaluated the surface area and pore volume of electrode with BET. We found that the surface area and pore volume in electrode decreased rapidly at the electrode with 40wt.% of ionomer in catalyst layer. MEA was fabricated by roll laminator machine and the roll laminating conditions for the preparation of MEA, such as laminating press, temperature and speed, were optimized. The MEA performance is not affected by laminating temperature and speed, but roll laminating press have a great effect on MEA performance.

Comparison of Dye Removal Performance of Direct and Indirect Oxidation Electrode (직접 산화와 간접 산화용 전극의 Dye 제거 성능 비교)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.963-968
    • /
    • 2010
  • This study has carried out to evaluate the performance of direct and indirect oxidation electrode for the purpose of decolorization of Rhodamine B (RhB) in water. Four kinds of electrodes were used for comparison: Pt and JP202 (indirect oxidation electrode), Pb and boron doping diamond (BDD, direct oxidation electrode). The effect of applied current (0.5 ~ 2.5 A), electrolyte type (NaCl, KCl, HCl, $Na_2SO_4$ and $H_2SO_4$) and electrolyte concentration (0.5 ~ 2.5 g/L), solution pH (3 ~ 11) and initial RhB concentration (25 ~ 125 mg/L) were evaluated. Experimental results showed that RhB removal efficiency were increased with increase of current, NaCl dosage and decrease of the pH. However, the effect of operating parameter on the RhB removal were different with the electrode type. JP202 electrode was the best electrode from the point of view of performance and energy consumption. The order of removed RhB concentration per energy lie in: JP202>Pt>Pb>BDD.