• Title/Summary/Keyword: Electrode force

Search Result 358, Processing Time 0.036 seconds

Development and Performance Evaluation of Polymer Micro-actuator using Segmented Polyurethane and Polymer Composite Electrode (세그먼트화 폴리우레탄을 이용한 고분자 마이크로 액츄에이터의 제작 및 고분자 전극의 상태에 따른 구동성능)

  • Jung Young Dae;Park Han Soo;Jo Nam Ju;Jeong Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.180-187
    • /
    • 2005
  • This paper is focused on the development of the flexible electrode for disc-type polymer actuators using Segmented Polyurethane(SPU). This paper consists of two parts. The one is about the mechanical property such as elastic modulus. these parameters mainly affect behaviors of polymer actuators and the other is about the electro-chemical property such as the surface resistance of the composite electrode affects the strength of electrostatic force, results in the deformation of polymer actuators. The Young's modulus was measured by UTM. As result, by increasing the modulus of a body of polymer actuators, the maximum displacement of polymer actuators are decreased. The surface resistance of the electrode was measured by 4 point probe system. Compared with the conductive silver grease, the displacement of polymer actuators using carbon black(CB) composite electrodes is comparably small but CB composite electrode should be the practical approach for the improvement of the performance of all-solid actuators, compared with another types of electrode materials.

A Study on the Resistance Spot Weldability of 590 MPa Grade DP Steel with Modified Electrode Tip (가공 전극을 적용한 590 MPa급 DP강의 저항 점용접에 관한 연구)

  • Lee, Sang-Min;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • The use of advanced high-strength steels (AHSS) in automotive applications has steadily increased over the past few years. Two different failure modes are generally observed in shear-tension tests for resistance spot welds of AHSS. interfacial fractures and full button pullout. Despite high load-carrying capacity. the resistance spot welds in AHSS cue prone to interfacial fractures. To improve the load carrying ability of welds during shear-lap and cross tension tests. the tip surface of the electrode was grooved in a round shape. The electrode tip surface was modified so as to concentrate the current now in the central and circumferential portion of the electrode force. The results showed that the interfacial fracture was suppressed in welds using the modified electrode. In a comparison of failure mode during mechanical tests. the welds made with the modified electrode showed a higher tendency to fail via full button pullout fracture.

Molecular Level Detection of Heavy Metal Ions Using Atomic Force Microscope (원자간인력현미경을 이용한 분자수준의 중금속 이온 검출)

  • Kim, Younghun;Kang, Sung Koo;Choi, Inhee;Lee, Jeongjin;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • A metal ion detector with a submicron size electrode was fabricated by field-induced AFM oxidation. The square frame of the mesa pattern was functionalized by APTES for the metal ion detection, and the remaining portion was used as an electrode by the self-assembly of MPTMS for Au metal deposition. The conductance changed with the quantity of adsorbed copper ions, due to electron tunneling between the mobile and surface electrodes. The smaller electrode has a lower limit of detection due to the enhancement in electron tunneling through metal ions that are adsorbed between the conductive-tip (mobile) and the surface (fixed) electrode. This two-electrode system immobilized with different functional groups was successfully used in the selective adsorption and detection of target materials.

  • PDF

Development of Highly Efficient Dye-Sensitized Solar Cells Using ZnO Post-Treated TiO2 Photoelectrodes (ZnO로 후처리된 TiO2 광전극을 이용한 고효율의 염료감응형 태양전지의 개발)

  • PARK, JUN-YONG;YUN, BYEONG-RO;KIM, TAE-OH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.419-425
    • /
    • 2017
  • In this study, an efficient dye-sensitive solar cells (DSSC) was developed after post-treatment of ZnO on $TiO_2$ photoelectrode. The $TiO_2$ electrode with ZnO post treatment was prepared with Titanium isoporopoxide in Zinc Nitrate Hexahydrate aqueous solution by incineration for 30 min at $450^{\circ}C$. The ZnO-post treated $TiO_2$ electrode showed strong dispersion force between particles in relation to the control $TiO_2$, referring high specific surface area and dye-adsorption rate. Proper addition of ZnO enhanced electron mobility and reduced internal resistance and electron recombination. Light conversion efficiency of DSSCs containing the ZnO-posttreated $TiO_2$ electrode increased 35.4% when compared to the DSSCs using $TiO_2$ electrode. It is similar to the DSSCs with $TiCl_4$ post treatment $TiO_2$ electrode. Increasing of light conversion efficiency was due to high specific surface area and dispersion force, and low dye-adsorption rate and electron recombination. Taken together, ZnO may be used as posttreatment of photoelectrode and replaced $TiCl_4$ that has high toxicity and causticity.

Research on the Electrical Charging of a Water Droplet on the Electrode and Droplet Actuation Method using Electrical Charge (전극표면에서 액적의 충전현상과 이를 이용한 액적의 이동 방법에 관한 연구)

  • Jung, Yong-Mi;Oh, Hyung-Chang;Kang, In-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.666-669
    • /
    • 2008
  • Droplet in miniaturized microfluidic systems have received much focused attention recently. In this work, electrical charging phenomenon of a conducting water droplet on the electrode under the dc electric field is studied and using this phenomenon droplet actuation method for microreactor applications is experimentally demonstrated. To find effects of key factors, the effects of electric field, medium viscosity, and droplet size are investigated. A scaling law of charging for the conducting droplet is derived from the experimental results. Unlike the case of a perfect conductor, the estimated amount of electrical charge ($Q_{est}$) of a water droplet is proportional to the 1.59 power of the droplet radius (R) and the 1.33 power of the electric field strength (E). (For a spherical perfect conductor, Q is proportional to R2 and E.) It is thought that the differences are mainly due to incomplete charging of a water droplet resulted from the combined effect of electrochemical reaction at electrode and the relatively low conductivity of water. Using this phenomenon, we demonstrate the transport of the charged droplet and fusion of two oppositely-charged droplets. When electric field is subjected sequentially on the electrode, the charged droplet is transported on the electrode. For the visualization of fusion of charged droplets, the precipitation reaction is used. When subjected to a DC voltage, two droplets charged are moving and merging toward each other due to the Coulombic force and chemical reaction is simultaneously occurred by coalescence of droplets. It may be due to the interchange effect of charge. It is shown that the droplet can be used for microreactor where transporting, merging etc. of reagents constitute unit operation.

  • PDF

An experimental study for boiling heat transfer enhancement under electric fields (전기장하에서의 비등 열전달 촉진에 관한 실험적 연구)

  • O, Si-Deok;Gwak, Ho-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2298-2314
    • /
    • 1996
  • Electric field effect on boiling of refrigerants R11, R113, and FC72 has been investigated experimentally. One purpose of the experimental investigation is to determine the effects of the electrode arrangements on electrohydrodynamic boiling of the above mentioned liquids. The test equipment employed in the experiment consists of a shell and tube heat exchanger with six or six and twelve rows of electrode wires around the tube. It has been found that the applied voltage promotes the boiling heat transfer coefficient except FC72. Boiling heat transfer enhancement obtained is about 230% for R11, 280% for R113. It has also been observed that bubbles detached from the tube aggregate at the place where the electrical gradient force balances with the buoyancy one. These aggregated bubbles force to decrease the boiling heat transfer coefficient as well as to reduce the voltage needed to the dielectric breakdown.

A Comparison of Energy Loss Characteristics between Radial and Axial Magnetic Field Type Vacuum Switches (대전력 펄스용 횡자계형 및 종자계형 진공스위치의 에너지 손실 특성 비교)

  • 이태호;허창수;이홍식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.3
    • /
    • pp.130-136
    • /
    • 2003
  • Crowbar system Vacuum switches, widely used In a pulsed power system, could use the magnetic force to prevent the electrode damage. Vacuum switches using the magnetic forces are classified roughly into RMF(Radial Magnetic Field) and AMF(Axial Magnetic Field) type. The RMF type switches restrain a main electrode from aging due to high temperature and high density arc by rotating the arc which is driven by the Lorenz force. The AMF type switches generate axial magnetic field which decreases the electrode damage by diffusing arc. In this paper, we present the energy loss characteristics of both RMF and AMF type switches which are made of CuCr(75:25 wt%) electrodes. The time-dependent dynamic arc resistance of high-current pulsed discharge in a high vacuum chamber(~10$^{-6}$ Torr). which occurs in RMF and AMF type switches, was obtained by solving the circuit equation using the measured values of the arc voltage and current. In addition, we compared energy loss characteristics of both switches. Based on our results, it was found that the arc voltage and the energy loss of an AMF type switch are lower than a RMF type switch.

Investigation of Electrostatic Force in Carbon Nanotube for the Analysis of Nonlinear Dynamic Behavior (카본 나노 튜브의 동역학 거동 해석에 필요한 정전기력 연구)

  • Lee J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.840-843
    • /
    • 2005
  • For an analysis of nonlinear dynamic behavior in carbon nanotube(CNT) an electrostatic force of CNT was investigated. The boundary condition in the CNT was assumed to clamped-clamped case at both ends. This type of CNT is widely used as micro and nano-sensors. For larger gaps in between sensor and electrode the van der Waals force can be ignored. The electrostatic force can be expressed as linear form using Taylor series. However, the first term of the series expansion was investigated here. The electrostatic force From this study we can conclude that for larger gaps the electrostatic force play an important role in determining the deflections as well as the pull-in voltage of simply supported switches.

  • PDF

The Effect of Needle Electrode in the Static Charge Elimination Methodes for Streaming-Electrification Insulating Oil (유동대전된 절연유의 제전방식중 침전극 삽입의 영향 (IV))

  • Chung, K.H.;Lim, H.C.;Kim, Y.W.;Hwang, M.W.;Paek, Y.C.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1202-1204
    • /
    • 1995
  • In this paper, We investigated a charge elimination by using a needle electrode in order to prevent the electrification phenomena of insulating oil flowing by force at the internal transformer. In our experiment, We used Acryle and Teflon as the material of charge reducer and measured each of their streaming current and needle electrode current. As a result of experiment, We can explain that the current of needle electrode increase in proportion to insulation of charge reducer.

  • PDF

Effect of Welding Current Type on Weldability in Spot Welding of Aluminum Alloy (알루미늄 합금의 점용접에서 용접전류 형태가 용접성에 미치는 영향)

  • 한용섭
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Spot welding is one of the important welding processes for the construction of thin metal sheet. Because of low investment cost, alternating welding current is widely applied for power source. Direct current type could be, however, recommened for high quality weldment. In this study, the effect of welding current type on the weldability and the electrode life in spot welding of aluminium alloy were investigated. Various welding tests were done by using three phase direct and alternating welding current, respectively. In spite of high variation of welding force, weld quality and electrode life with alternating welding current were shown better results than those with direct current for 2mm thick alumininum alloy sheets. This was due to excessive erosion of the positive electrode in direct welding current compared with the negative one. On the contrary to 2mm sheets, the welding parameters of alternating current for 1mm sheets must be carefully selected.

  • PDF