• Title/Summary/Keyword: Electrode fabrication

Search Result 864, Processing Time 0.029 seconds

Preparation and Electrochemical Characterization of ZrO2/Ti Electrode by ESD Coating Method (ESD 코팅법에 의한 ZrO2/Ti 전극의 제조 및 전기화학적 특성)

  • Kim, Han-Joo;Hong, Kyeong-Mi;Sung, Bo-Kyung;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.95-99
    • /
    • 2008
  • This study has made the electrode that is coated zirconium oxide on the titanium by ESD(Electrostatic spray deposition) coating methode. It has investigated the effects of the etching method of a Ti substrate as the preparation, making of zirconium oxide film and electrochemical characteristics of the electrode that is etched on the titanium. The HCl etching develops a fine and homogeneous roughness on the Ti substrate. Fabrication and material properties of the metal oxide electrode, which is known to be so effective to generate ozone and hypochlorous acid (HOCl) as power oxidant, were studied. A proper metal oxide material is focus zirconium oxide through reference. A coating method to enhance the fabrication reproducibility of the zirconium oxide electrode was used ESD coating method by zirconium oxychloride. Zirconium oxide films on the Ti substrate were tested using SEM, XRD, Cyclic voltammetry.

Fundamental Study of CNTs Fabrication for Charge Storable Electrode using RF-PECVD System

  • Jung, Ki-Young;Kwon, Hyuk-Moon;Ahn, Jin-Woo;Lee, Dong-Hoon;Park, Won-Zoo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.8-13
    • /
    • 2009
  • Plasma enhanced chemical vapor deposition (PECVD) is commonly used for Carbon nanotubes (CNTs) fabrication, and the process can easily be applied to industrial production lines. In this works, we developed novel magnetized radio frequency PECVD system for one line process of CNTs fabrication for charge storable electrode application. The system incorporates aspects of physical and chemical vapor deposition using capacitive coupled RF plasma and magnetic confinement coils. Using this magnetized RF-PECVD system, we firstly deposited Fe layer (about 200[nm]) on Si substrate by sputter method at the temperature of 300[$^{\circ}$] and hence prepared CNTs on the Fe catalyst layer and investigated fundamental properties by scanning electron microscopy (SEM) and Raman spectroscopy (RS). High-density, aligned CNTs can be grown on Fe/Si substrates at the temperature of 600[$^{\circ}$] or less.