• Title/Summary/Keyword: Electrode degradation

Search Result 287, Processing Time 0.03 seconds

Study on Possibility of PrBaMn2O5+δ as Fuel Electrode Material of Solid Oxide Electrolysis Cell (이중 페로브스카이트 촉매 PrBaMn2O5+δ의 고온전기분해조(Solid Oxide Electrolysis Cell) 연료극 촉매로 적용 가능성에 대한 연구)

  • Kwon, Youngjin;Kim, Dongyeon;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.491-496
    • /
    • 2017
  • The hydrogen($H_2$) is promising energy carrier of renewable energy in the microgrid system such as small village and military base due to its high energy density, pure emission and convenient transportation. $H_2$ can be generated by photocatalytic water splitting, gasification of biomass and water electrolysis driven by solar cell or wind turbine. Solid oxide electrolysis cells(SOECs) are the most efficient way to mass production due to high operating temperature improving the electrode kinetics and reducing the electrolyte resistance. The SOECs are consist of nickel-yttria stabilized zirconia(NiO-YSZ) fuel electrode / YSZ electrolyte / lanthanum strontium manganite-YSZ(LSM-YSZ) air electrode due to similarity to Solid Oxide Fuel Cells(SOFCs). The Ni-YSZ most widely used fuel electrode shows several problems at SOEC mode such as degradation of the fuel electrode because of Ni particle's redox reaction and agglomeration. Therefore Ni-YSZ need to be replaced to an alternative fuel electrode material. In this study, We studied on the Double perovskite $PrBrMnO_{5+{\delta}}$(PBMO) due to its high electric conductivity, catalytic activity and electrochemical stability. PBMO was impregnated into the scaffold electrolyte $La_{0.8}Sr_{0.2}Ga_{0.85}Mg_{0.15}O_{3-{\delta}}$(LSGM) to be synthesized at low temperature for avoiding secondary phase generated when it exposed to high temperature. The Half cell test was conducted at SOECs and SOFCs modes.

Enhanced Cycle Performance of Bi-layer Structured LMO-NCM Positive Electrode at Elevated Temperature (겹층구조의 LMO-NCM 복합양극을 통한 고온 사이클 수명개선 연구)

  • Yoo, Seong Tae;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • Spinel LiMn2O4 (LMO) and layered LiNi0.5Co0.2Mn0.3O2 (NCM) are widely used as positive electrode materials for lithium-ion batteries. LMO and NCM positive electrode materials have a complementary properties. LMO has low cost and high safety and NCM materials show a relatively high specific capacity and better cycle life even at elevated temperature. Therefore, the LMO and NCM active materials are blended and used as a positive electrode in large-size batteries for electric vehicles (xEV). In this study, the cycle performance of a blended electrode prepared by simply mixing LMO and NCM and a bi-layer electrode in which two electrode layers aree sequentially coated are compared. The bi-layer electrode prepared by composing the same ratio of both active materials has similar capacity and cycle performance to the blend electrode. However, the LN electrode coated with LMO first and then NCM is the best in the full cell cycle performance at elevated temperature, and the NL electrode, in which NCM is first coated with LMO has a faster capacity degradation than the blended electrode because LMO is mainly located on the top of the electrode adjacent to electrolyte and graphite negative electrode. Also, the LSTA (linear sweep thermmametry) analysis results show that the LN bi-layer electrode in which the LMO is located inside the electrode has good thermal stability.

Electrochemical Degradation of Phenol Using Dimensionally Stable Anode (촉매성 산화물 전극을 이용한 페놀의 전기화학적 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.999-1007
    • /
    • 2013
  • Electrochemical degradation of phenol was evaluated at DSA (dimensionally stable anode), JP202 (Ru, 25%; Ir, 25%; other, 50%) electrode for being a treatment method in non-biodegradable organic compounds such as phenol. Experiments were conducted to examine the effects of applied current (1.0~4.0 A), electrolyte type (NaCl, KCl, $Na_2SO_4$, $H_2SO_4$) and concentration (0.5~3.0 g/L), initial phenol concentration (12.5~100.0 mg/L) on phenol degradation and $UV_{254}$ absorbance as indirect indicator of by-product degraded phenol. It was found that phenol concentration decreased from around 50 mg/L to zero after 10 min of electrolysis with 2.5 g/L NaCl as supporting electrolyte at the current of 3.5 A. Although phenol could be completely electrochemical degraded by JP202 anode, the degradation of phenol COD was required oxidation time over 60 min due to the generation of by-products. $UV_{254}$ absorbance can see the impact of as an indirect indicator of the creation and destruction of by-product. The initial removal rate of phenol is 5.63 times faster than the initial COD removal rate.

Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration

  • Yokokawa, Harumi;Horita, Teruhisa;Yamaji, Katsuhiko;Kishimoto, Haruo;Brito, M.E.
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • The characteristic features of solid oxide fuel cells are reviewed from the viewpoint of the thermodynamic variables to be developed inside cells/stacks particularly in terms of gradients of chemical potential, electrical potential and temperature and corresponding flows of air, fuel, electricity and heat. Examples of abrupt destruction of SOFC systems were collected from failures in controlling their steady flows, while continuous degradation was caused by materials behaviors under gradients of chemical potentials during a long operation. The local equilibrium approximation has been adopted in NEDO project on the durability/reliability of SOFC stacks/systems; this makes it possible to examine the thermodynamic stability/reactivity as well as mass transfer under the thermodynamic variable gradients. Major results of the NEDO project are described with a focus on degradation/deterioration of electrolyte and electrode materials.

The performance analysis of photovoltaic module accounting for solar cell degradation and series resistance (태양전지 셀의 열화와 직렬저항의 변화에 따른 태양전지 모듈의 특성 해석)

  • Park, Chi-Hong;Kang, Gi-Hwan;Waithiru, L.;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.28-29
    • /
    • 2006
  • When photovoltaic module is used for a long time, its performance decreases due to several reasons. In this paper, we focus on the possibilities mainly contributing to the degraded efficiency of the polycrystalline silicon photovoltaic modules. The analysis is based on the modules that have been used for 15 years. These are two main reasons that cause the efficiency degradation, the corrosion and thermal decomposition. The former phenomenon of electrode is mainly due to the moisture from damaged back sheet in some module. However the other reason of the degraded efficiency comes from the thermal decomposition, which can not be observed from the outside but only by experiment. In this study, the comparison between the efficiency of normal modules and degradation modules is presented. Module having degraded cell was seen to cause increase of series resistance by about 80%, in comparison to normal samples efficiency which reduce by about 20%. This study shows that the effects of series resistances on module performance are critical. These effects must be understood and taken into consideration when analyzing performance degradation.

  • PDF

Degradation characteristics of ITO thin film deposited by RF magnetron sputter (RF 마그네트론 스퍼터로 증착시킨 ITO 박막의 열화 특성에 관한 연구)

  • 김용남;박정현;신현규;송준광;이희수
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.234-234
    • /
    • 2003
  • Indium tin oxide(ITO) is an advanced ceramic material with many electronic and optical applications due to its high electrical conductivity and transparency to light ITO thin films are used in transparent electrodes for display devices, transparent coatings for solar energy heat mirrors and windows films in n-p heterojunction solar cells, etc. Almost all display devices were fabricated on transparent ITO electrode substrates. There are several factors that cause decay in the efficiency and the failure of display devices. The degradation or damage of ITO is one of the main factors. Under normal operating conditions, the electric fold required for the operation of display devices is very high As a high electric field induces the joule heat, the degradation of the ITO thin film may be expected. Therefore, it is worthy to investigate the thermal and electrical effect on ITO thin films.

  • PDF

Properties of PZI Thin film on the Ru/RuO2 Electrode (Ru/RuO2전극에 성장한 PZT 박막의 특성에 관한 연구)

  • Kang, Hyun-Il;Choi, Jang-Hyun;Park, Young;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.865-869
    • /
    • 2002
  • The structural and electrical properties of PZT (lead zirconate titante) thin films grown on Pt (platinum) and Ru/Ru $O_2$(ruthenium/ruthenium oxide) electrodes were investigated. Thin films of PZT were deposited on a variety of electrodes using the rf-magnetron sputtering process. PZT films exhibited polycrystalline structure with strong PZT (100) plane and weak (211) plane for an optimizied Pt electrode and (100), (101), (111), (200), (210), (211) planes for Ru/Ru $O_2$. Switching polarization versus fatigue characteristic of Pt/Ti electrodes showed 20% degradation up to 1 $\times$ 10$_{9}$ cycles. No significant fatigue was observed in the films on Ru/Ru $O_2$ electrodes up to Ix109 test cycles. The results show that the new Ru/Ru $O_2$ bottom electrodes are expected to reduce the degradation of ferroelectric fatigue.

Electrochemical Oxidation of Amoxicillin in Its Commercial Formulation on Thermally Prepared RuO2/Ti

  • Auguste, Appia Foffie Thiery;Quand-Meme, Gnamba Corneil;Ollo, Kambire;Mohamed, Berte;Sahi placide, Sadia;Ibrahima, Sanogo;Lassine, Ouattara
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.82-89
    • /
    • 2016
  • In this work, a ruthenium dioxide electrode has been prepared by thermal decomposition at 400 ℃ then used for the oxidation of commercial amoxicillin. The physical characterization showed that RuO2 electrode presents a mud cracked structure. Its electrochemical characterization has revealed an increase of the voltammetric charge in acid electrolyte compared to neutral electrolyte indicating the importance of protons in its surface redox processes. The voltammetric study of the oxidation of amoxicillin has been investigated. It has been obtained that the oxidation of amoxicillin is controlled by both adsorption and diffusion processes. Moreover, the oxidation of amoxicillin occurs via direct and indirect processes in free or electrolyte containing chlorides. Through preparative electrolysis, enhancement of amoxicillin oxidation was observed in the presence of chloride where the amoxicillin degradation yield reached more than 50 % compared to less than 5% in the absence of chlorides. Spectrophotometric investigations have revealed the degradation of intermediates absorbing at 350 nm.

Visible Light Photoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotube/Titania Composite Electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • Photoelectrocatalytic decolorization of methlene blue (MB) in the presence of two types of carbon nanotube/titania and yttrium-treated carbon nanotube/titania electrodes in aqueous solutions were studied under visible light. The prepared composite electrodes were characterized by X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray analysis, and photoelectrocatalytic activity. The photoelectrocatalytic performances of the supported catalysts were evaluated for the decolorization of MB solution under visible light irradiation. The results showed that yttrium incorporation enhanced the decolorization rate of MB. It was found that the photoelectrocatalytic degradation of a MB solution could be attributed to the combined effects caused by the photo-degradation of titania, the electron assistance of carbon nanotube network, the enhancement of yttrium and a function of the applied potential. The repeatability of photocatalytic activity was also tested. The presence of yttrium enhanced the hydrophillicity of yttrium-carbon nanotubes/titania electrode because more OH groups can be adsorbed on the surface.

A Study on Electric Properties of Polyamide Film due to Temperature Change

  • Lee, Sung Ill
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • In this study, we measured the leakage current at $30{\sim}80^{\circ}C$ and $90{\sim}170^{\circ}C$ under a voltage of 200~980 V applied to samples (ordinary temperature) and polyamide film specimens degraded at $170^{\circ}C$ for 20 minute respectively. After the specimen was degraded at $130^{\circ}C$ and $50^{\circ}C$, a voltage of 200 to 800 V was applied for 10 to 60 minutes. The measurement of the leakage current resulted in the following conclusions. In the case of using Al and Cu as the main electrode, it was confirmed that the leakage current also increased in high temperatures as the voltage increased. Regardless of the type of main electrode, when the temperature was constant at $130^{\circ}C$ and $50^{\circ}C$, the leakage current increased as the voltage increased, and gradually decreased with time. As a result of the FTIR measurement, the main absorption of the infrared absorption spectrum was C=O at about $1650cm^{-1}$ and N-H diagonal vibration occurred at around $1550cm^{-1}$. There was no change in the material, so no effect of temperature was observed. By the results of SEM measurements, as the temperature of degradation increases, cracks in the specimen disappear. This may be because the amide bond (-CO-NH-) is absorbed by the material.