• Title/Summary/Keyword: Electrode System

Search Result 1,773, Processing Time 0.032 seconds

Improved electrode pattern design for lateral force increase in electrostatic levitation system

  • Woo, Shao-Ju;Jeon, Jong-Up;higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.311-314
    • /
    • 1996
  • In contactless disk handling systems based on electrostatic suspension in which the stator is to be transferred, the limited stiffness in lateral direction severely restricts the achievable translational acceleration. In existing stator electrode pattern designs, the magnitude of the lateral force is determined by the magnitude of the control voltages which are applied to the individual electrodes to levitate the disk stably. As a result, the lateral force cannot be set arbitrarily. A new stator electrode pattern is presented for the electrostatic levitation of disk-shaped objects, in particular silicon wafers and aluminum hard disks, which allows the lateral forces to be controlled independently from the levitation voltages. Therefore, greater lateral forces can be obtained, compared with the existing stator designs. Experimental results will be presented for a 4-inch silicon wafer that clearly reveal the increased lateral stiffness by using the proposed stator electrode compared to the conventional electrode pattern.

  • PDF

Development of Accurate Bevel Gear Die (정밀 베벨 기어 금형개발)

  • 이광오;진민호;제진수;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.43-46
    • /
    • 2003
  • To develop bevel gear dies that have characteristics of high precision and enough life time, the technology of die manufacturing and design which increase the resistance of wear and fatigue is essentially needed. Here in the study, we have investigated several materials for dies and electrode. And, the most economical and suitable electrode material has been selected through the characteristic analysis of electrode materials such as copper, graphite and chromium copper. With the help of CAD/CAM/CAE, the total manufacturing system of high precision electrode for bevel gear has been established.

  • PDF

Electrohydrodynamic Pumping Characteristics of the Needle-Centered Nozzle Electrode (침심 노즐전극의 전기유체역학적 펌핑 특성)

  • Jung, Hoi-Won;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1812-1817
    • /
    • 2008
  • A cooling system for microelectronics is becoming more important as its surface heat density is projected to reach that of the sun surface. The existing technologies using natural and forced convection are limited to solve the problems. Recently, an electrohydrodynamic driven flow is studied as one of the means to cope with this problems. A new method, utilizing a needle-centered nozzle electrode, has been proposed and investigated. The I-V characteristics of the nozzle electrode for deionized water and silicone oil were significantly different from that of without liquid, which might be due to the liquid drop covered on the nozzle tip by the EHD force acting near the needle tip. Results showed that the liquid pumping rate and flow efficiency of the nozzle electrode were very high, especially for the silicone oil. Theoretical analysis also showed the effectiveness of the needle electrode centered in the ceramic nozzle, which, however, can be a means as a liquid pump.

Heart Rate Variability Analysis for Significance Between Ag/AgCl Electrode and Electric Textile Sensor in Wearable Condition

  • Shin, Hang-Sik;Lee, Chung-Keun;Yun, Yong-Hyeon;Lee, Myoung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.453-456
    • /
    • 2005
  • Significance verification of electric fabric compared with existing electrode is very useful for the wearable and ubiquitous healthcare. In this paper, we verified the significance between Ag/AgCl electrode and electric fabric in dry-normal condition through heart rate variability analysis. We can find 98 % or more similarity about low frequency and high frequency which is important parameter for the heart rate variability analysis between two different electrodes in experiment. From this result, we confirmed that the power spectral density of low frequency, high frequency component from the electric fabric has high similarity compared with the result of heart rate variability from Ag/AgCl electrode in dry-normal condition.

  • PDF

A brief review on graphene applications in rechargeable lithium ion battery electrode materials

  • Akbar, Sameen;Rehan, Muhammad;Liu, Haiyang;Rafique, Iqra;Akbar, Hurria
    • Carbon letters
    • /
    • v.28
    • /
    • pp.1-8
    • /
    • 2018
  • Graphene is a single atomic layer of carbon atoms, and has exceptional electrical, mechanical, and optical characteristics. It has been broadly utilized in the fields of material science, physics, chemistry, device fabrication, information, and biology. In this review paper, we briefly investigate the ideas, structure, characteristics, and fabrication techniques for graphene applications in lithium ion batteries (LIBs). In LIBs, a constant three-dimensional (3D) conductive system can adequately enhance the transportation of electrons and ions of the electrode material. The use of 3D graphene and graphene-expansion electrode materials can significantly upgrade LIBs characteristics to give higher electric conductivity, greater capacity, and good stability. This review demonstrates several recent advances in graphene-containing LIB electrode materials, and addresses probable trends into the future.

Fabrication of Micro Tool Electrode for Machining Micro Structures using Wire Electrical Discharge Grinding(WEDG) (WEDG 방법을 이용한 마이크로 구조물 가공용 미세공구 제작)

  • Park Sung-Jun;Ahn Hyun-Min;Lee Kyo-Seung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.13-20
    • /
    • 2005
  • Micro EDM process is generally used for machining microholes, cavities, and three dimensional shapes. For machining micro structures, first of all, micro tool electrode is indispensable and WEDG system is proposed for tool fabrication method. When using WEDG, its machining characteristics are highly affected by many EDM parameters such as applied voltage, current, rotation speed, capacitance, and pulse duration. Therefore, the design of experiment is introduced to fully understand the effect of the EDM parameters on machining tool electrode. And an attempt has been made to develop the mathematical model for predicting the size of the tool electrode by calculating spark distance. The suggested model was verified with experiment and predicted working gap distance is in good accord with the measured value.

Evaluation of Measurement Accuracy of Ground Impedances in Counterpoise according to Location of Auxiliary Electrodes (보조전극의 위치에 따른 매설지선의 접지임피던스 측정정확도의 평가)

  • Lee, Bok-Hee;Choi, Young-Chul;Choi, Jong-Hyuk;Kim, Dong-Kyu;Lee, Gyu-Sun;Yang, Soon-Man;Kim, Tae-Gi
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.352-355
    • /
    • 2009
  • The ground resistance has been used as a method of estimating the capability of counterpoise. When transient currents blow through a ground electrode, it is reasonable to evaluate the performance of ground electrode system as a ground impedance instead of ground resistance. However, the measurement method of ground impedance for counterpoise is not clearly presented. This paper describes the measurement method of ground impedance considering the earth mutual resistances and AC mutual coupling. When we measure the ground impedance, the error due to earth mutual resistances depends on the distance between the auxiliary electrodes and the electrode under test. The measurement accuracy of high frequency ground impedance is mainly influenced by the location of the current electrode and the potential electrode.

  • PDF

Ozone Generation Effect and application using Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드 전극을 이용한 오존 발생의 효과 및 응용)

  • Pi, Young-Min;Fujisima, Akira;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.170-172
    • /
    • 2002
  • Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped diamond(BDD) were used as anode for generating ozone gas by electrolysis of acid solution. In this work, we have studied ozone generating system using BDD electrode. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable for electrolyte while $PbO_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte.

  • PDF

Simultaneous Determination of Glucose and Ethanol of Takju by Biosensor using Dual Cathode Electrode (Dual Cathode Electrode를 이용한 바이오센서로 탁주 중의 포도당 및 에탄올의 동시 측정)

  • Park, In-Seon;Kim, Jung-Ho;Kim, Tae-Jin;Kim, Nam-Soo;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.974-980
    • /
    • 1996
  • A biosensor was prepared with dual cathode electrode and immobilized enzyme membrane. A nylon net was used for the immobilization of glucose oxidase and alcohol oxidase. The immobilized enzymes were placed on the surface of the electrode which was prepared with one anode and two cathodes as an oxygen electrode. The determination of components by the biosensor was based on the consumption of dissolved oxygen. The optimum condition of this system was 0.1 M potassium phosphate buffer solution, pH 7.5 at $35^{\circ}C$. Glucose and ethanol in takju were simultaneously determined by the biosensor. Comparing with UV-spectrophotometer and gas chromatograph for cross checking, there was a good correlation between the biosensor and the conventional methods. Biosensor with dual cathode electrode required no clarification or pretreatments. It was used for simultaneous determination of glucose and ethanol during the fermentation of takju.

  • PDF

A Electrical Characteristics of Disk-type Piezotransformer with Electrode Ratio of Driving and Generating Part (디스크형 압전변압기의 전극비에 따른 전기적 특성)

  • 이종필;채홍인;정수현;홍진웅
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.458-463
    • /
    • 2003
  • In order to develope piezoelectric transformer for the ballast of fluorescent lamp, a new shape and electrode pattern of piezoelectric transformer has been investigated in this work. The composition of piezoelectric ceramics was 0.95Pb(Zr$_{0.51}$Ti$_{0.49}$)O$_3$+0.03Pb(Mn$_{1}$3/Nb$_{2}$3/)O$_3$+0.02Pb(Sb$_{1}$2/Nb$_{1}$2/)O$_3$. The sample prepared by this composition system showed the characteristics which has about 1200 of relative dielecric constant, 1100 of the mechanical quality factor, 0.53 of the electromechanical coupling coefficient, 320 pC/N of the piezoelectric constant d$_{33}$, 0.3 % of the dissipation factor. Diameter and thickness of disk-type piezoelectric transformer was 45 mm and 4 mm, respectively. The driving and generating electrode with their gap of 1mm were fabricated on the top surface. But the common electrode was fabricated on the whole bottom surface. The electrode surface ratio of driving and generating part on the top surface ranges from 1.4:1 to 3:1. We investigated the electrical characteristics with the variation of the electrode surface ratio of driving and generating part in the range of load resistance of 100 $\Omega$~70 k$\Omega$. The set-up voltage ratio of this piezoelectric transformer increases with increasing both the electrode surface of driving part and the load resistance. The set-up voltage ratio at no load resistance was more than 60 times. On the other hand, the efficiency decreases with increasing the electrode surface of driving part. In the case of the electrode surface of both 1.4:1 and 2:1, maximum efficiency showed above 97 % at load resistance of 2 k$\Omega$. However, in the case of the electrode surface of 3:1, maximum efficiency showed about 94 % at load resistance of 3 k$\Omega$.>.>.>.