• Title/Summary/Keyword: Electrode Movement

Search Result 124, Processing Time 0.022 seconds

A Study on the Improvement of the Efficiency of Dye-sensitized Solar Cell using the Laser Scribing and the Grid Electrode (레이저 식각 및 그리드 전극을 적용한 염료감응형 태양전지의 효율 향상 연구)

  • Seo, Hyun-Woong;Son, Min-Kyu;Lee, Kyung-Jun;Kim, Jeong-Hoon;Hong, Ji-Tae;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1802-1806
    • /
    • 2008
  • Dye-sensitized solar cell (DSC) based on some advantages such as transparency, cheap materials and anti-sensibility for an anlge of incidence has been expected to capture most of solar cell market in the near future. To practical use of DSC, researches on high efficiency as well as upscaling are necessary. In this study, we tried to insert the grid electrode in DSC and scribe transparent conducting oxide (TCO) using Nd:YAG laser. The grid electrode makes the electron movement improved and diffusional movement minimized. Consequently, the efficiency of DSC was increased by reducing electron loss and the surface resistance of TCO. The grid electrode was made using Ag target by radio frequency sputtering. And the scribed surface was confirmed by taking a scanning electron microscopy photos. As the result, grid cell had improved photocurrent and fill factor as compared with the conventional cell. And the efficiency was increased about 1% by enhanced photocurrent and fill factor.

A study on the A.C. arc movement in a transverse A.C. magnetic field at atmospheric pressure (황축교류자계에 의한 대기중에서의 교류 아아크의 이동에 관한 연구)

  • 전춘생;엄기환
    • 전기의세계
    • /
    • v.24 no.6
    • /
    • pp.77-84
    • /
    • 1975
  • This paper treats A.C. arc movement in a transverse A.C. magnetic field at atmospheric pressure with the purpose of selecting electrode materials and obtaining detailed data for design of A.C. air circuit breaker, plasma accelerator and plasma jet. Arc velocities in transverse magnetic field are measured by varying arc current, arc voltage, gap length, magnetic flux density and the erosion of electrode surface, which influence arc velocities. The main results are; 1)Arc velocities in transverse magnetic field have different values according to electrodes of various materials and decrease in a descending order of cold cathode, medium cathode and hot cathode. 2)Arc velocities in transverse magnetic field increases with arc current, arc voltage, gap length and magnetic flux densith and on the other hand decrease with the increase of electrode surface erosion. 3)D.C.arc velocity in D.C. magnetic field is higher than A.C. arc velocity in A.C. magnetic field of the same value.

  • PDF

CFD Analysis of Gas Insulated Switchgear with Moving Grid (이동격자를 이용한 초고압 차단기 유동해석)

  • Min B. S.;Park I. S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.737-738
    • /
    • 2002
  • To develop and improve a GIS(Gas Insulated Switchgear), the prediction of the pressure in puffer cylinder and the flow between the nozzle and the moving electrode within GIS is very important.The leading companies in GIS business issue the results of the study of flow within GIS including arc plasma. In this study, the characteristics of the flow of the GIS developed by HHI(Hyundai Heavy Industries Co. Ltd.) was investigated. To simulate the compressible flow of GIS, the CFX, a commercial CFD code, was used. With moving grid method, the movement of piston and electrode was simulated. The moving grid method was superior to the method of varying the property of cells to move an obsticle, in stability and convergencce of solution. The calculated maximum pressure within the puffer cylinder was matched with experimental data within $5{\%}$ error. The oscilation of pressure in GIS after the movement of electrode was well predicted.

  • PDF

A Study on the Resistance Spot Welding of Aluminum Alloy (I) (알루미늄 합금의 저항점 용접에 관한 연구 ( I ))

  • 김상필;홍태민;장희석
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.127-140
    • /
    • 1994
  • Resistance spot welding has been widely used in the sheet metal joining processes because of its high productivity and convenience. In the resistance spot welding processes the size of molten nugget is a criterion to assess weld quality. Many research have founded on measuring weld nugget size at the same time monitoring welding process parameters such as dynamic resistance and electrode movement. With increasing demand of energy saving, many efforts were made to employ aluminum alloys that are lighter than steel and have relatively equivalent strength to steel in the automobile industry. In this paper, spot weldability of aluminum alloys for various welding conditions were examined by series of experiments. One of the 6000 series (Mg-Si) aluminum alloy, 6383-T4 was chosen, which is currently considered as a substitute for the galvanized steel. Dynamic resistance, electrode movement and corresponding nugget size were observed and compared to the case of steel. Finally, resistance spot welding of dissimilar material (galvanized steel-aluminum alloy) was attempted.

  • PDF

Electrode Force Characteristics of Micro Servogun (마이크로 서보건의 가압 특성)

  • 임창식;박승규;장희석
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.159-161
    • /
    • 2003
  • Electrode movement signal has been widely used in resistance spot welding system This study is to compare accelerometer signal with gap sensor signal in servo gun system. This study propose that accelerometer output signal is a useful technique of quality monitoring in resistance welding processes.

  • PDF

Effect of Ceramic-Electrode Interface on the Electrical Properties of Multilayer Ceramic Actuators (적층형 세라믹 액츄에이터의 세라믹-전극간 계면이 전기적 특성에 미치는 영향에 대한 연구)

  • 하문수;정순종;송재성;이재신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.896-901
    • /
    • 2002
  • The polarization and strain behavior of multilayer ceramic actuators fabricated by tape casting using a PNN-PZT ceramics were investigated in association with electrode size and internal layer number. Spontaneous polarization and strain decreased with increasing electrode size. In addition, the increase of internal layer number brought reduced spontaneous polarization and increased the field-induced strain. Because the actuators structure is designed to stack ceramic layer and electrode layer alternatively, the ceramic-electrode interfaces may act as a resistance to motion of domain wall. To analyze the effect of ceramic-electrode interface, the diffraction intensity ratio of (002) to (200) planes was calculated from X-ray diffraction patterns of samples subjected to a voltage of 200 V. The diffraction intensity ratio of (002) to (200) planes was decreased with increasing electrode size and internal layer number. The diffraction intensity ratio and straining behavior analyses indicate that the Polarization and strain were affected by the amount of 90°domain decreasing with increasing electrode size and internal layer number. Consequently, the change of polarization and displacement with respect to electrode size and layer number is likely to be caused by readiness of the domain wall movement around the interface.

A Model Study for Electrical Resistivity Method Using Three-Point Electrode Array (Three-Point 전극(電極) 배열법(配列法)을 이용(利用)한 전기(電氣) 비저항탐사(比抵抗探査) 모형연구(模型硏究))

  • Min, Kyung Duck;Kim, Chong Mi
    • Economic and Environmental Geology
    • /
    • v.14 no.3
    • /
    • pp.111-122
    • /
    • 1981
  • This study is a model analysis for an effective application of the geophysical prospecting to the investigation of geological structures or useful resources, and the purpose of it is to research a property of the electrical resistivity prospecting, especially by using a Three-Point electrode array method. In using the Three-Point electrode array method, it is theoretically assumed to choose the infinite for a distance between the two current electrodes, however it is impossible in applying to the practical field prospecting. Therefore this study was conducted for determination and presentation of a minimum appropriate distance between the two current electrodes by making a study on prospecting effect in the variation of distance between both the electrodes. In case that the ratios of the distance between the two current electrodes to that between the two potential electrodes are respectively chosen for 40, 400, 5,000, the experimental data of this study showed that the minimum appropriate distance between the two current electrodes is forty times as much as that between two potential electrodes. In order to make clear a problem about prospecting depth which is essential to the data processing, it had been chosen equally to the distance between two potential electrodes. As a result of it, it was shown that the anomaly is appeared along the position of an assumed ore body. Consequently it was found out that the prospecting depth of the Three-Point electrode array method is the same as the distance between the two potential electrodes. From the model experiment on the sheeting ore body(or linear structure) of horizontal, dipping of $30^{\circ}$, $60^{\circ}$ and vertical on the basis of above experimental condition, it was found out that the position and dip of assumed ore body could be inferred from the aspects of the equiresistivity curve. In consequence of performing out the simultaneous Normal and Reversal electrode movement, it was shown that the electrode movement of the Reversal forms the anomaly more clearly than that of Normal when the sheeting ore body is situated obliquely, therefore it could be ascertained that the electrode movement have to be performed simultaneously in the manner of Normal and Reversal. It was also exhibited that the aspect of the equiresistivity curve forms symmetrically when an assumed ore body (or linear structure) is situated horizontally or vertically, that is, symmetrically, and moreover that the aspect of the equiresistivity curve forms unsymmetrically when an assumed ore body (or linear structure) is situated obliquely. On the basis of these experimental analysis it is thought that it can be inferred from the aspect of equiresistivity curve whether an assumed ore body is obliquely situated or not.

  • PDF

Characteristics of Machining corners in 3-D Micro EDM (3-D 미세 방전 가공의 모서리 형상 가공 특성)

  • 김기현;김보현;김규만;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.922-925
    • /
    • 2000
  • As mechanical components require size minimization and high precision, micro die machining technology has been developed in many fields. to machine a micro die by EDM, sometimes, a polygonal electrode is use. Machining corners by MEDM shows special characteristics. Physically, electrons are concentrated in sharp region and a high potential level is established in this region. Also, the electrode can't be rotated when machining a polygonal cavity, and machined debris can not drawn off easily. Discharge concentration in corners and 2nd discharge by machined debris result in distortion of corner shape. This phenomena can be improved by shaking the electrode. This method is also shown to be effective in improving surface roughness by circulation of machining fluid resulting from movement of the electrode.

  • PDF

In-Process Monitoring of Micro Resistance Spot Weld Quality using Accelerometer (가속도계를 이용한 마이크로스폿용접의 인프로세스 모니터링)

  • Chang, Hee-Seok;Kwon, Hyo-Chul
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.115-122
    • /
    • 2011
  • This study is to propose an in-process monitoring system for micro resistance spot welding processes using minute accelerometer. A minute accelerometer is mounted on the upper moving electrode tip holder. With its high sensitivity and frequency response characteristics, accelerometer output signal has been successfully recorded and integrated twice to reflect electrode expansion during micro spot welding processes. The analysis of electrode expansion pattern was attempted to find its correlation with spot weld quality. Major previous findings1-6) regarding spot weld quality assessment with the electrode expansion signal in large scale resistance spot welding processes were proved to be true in this in-process monitoring system.

Distortion of the Bottom Surface in Micro Cavity Machining Using MEDM (미세 캐비티 방전 가공에서 바닥면 형상 왜곡)

  • 임종훈;류시형;제성욱;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.191-197
    • /
    • 2003
  • As mechanical components are miniaturized, the demand on micro die and mold is increasing. Micro mechanical components usually have high hardness and good conductivity. So micro electrical discharge machining (MEDM) is an effective way to machine those components. In micro cavity fabrication using MEDM, it is observed that the bottom surface of cavity is distorted. Electric charges tend to be concentrated at the sharp edge. At the center of the bottom surface, debris can not be drawn off easily. These two phenomena make the bottom surface of the electrode and workpiece distort. As machining depth increases, the distorted shape of electrode approaches hemisphere. This process is affected by capacitance and the size of electrode. By using a smaller electrode than the desired cavity size and appropriate tool movement, bottom shape distortion can be prevented.