• Title/Summary/Keyword: Electrode Evaporation

Search Result 131, Processing Time 0.015 seconds

Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films (Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성)

  • Kim, Geun-Woo;Seo, Yong-Jun;Sung, Chang-Hoon;Park, Keun-Young;Cho, Ho-Je;Heo, Si-Nae;Koo, Bon-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.