• 제목/요약/키워드: Electroconductive Ceramic

검색결과 48건 처리시간 0.03초

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Annealing 온도(溫度)의 영향(影響) (Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권9호
    • /
    • pp.434-441
    • /
    • 2006
  • The effect of pressureless-sintered temperature on the densification behavior, mechanical and electrical properties of the $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at temperatures in the range of $1,750{\sim}1,900[^{\circ}C]$, with an addition of 12[wt%] of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3\;and\;Y_2O_3$) as a sintering aid. The relative density and mechanical properties are increased markedly at temperatures in the range of $1,850{\sim}1,900[{^\circ}C]$. The relative density, flexural strength, vicker's hardness and fracture toughness showed the highest value of 81.1[%], 230[MPa], 9.88[GPa] and $6.05[MPa\;m^{1/2}]$ for $SiC-ZrB_2$ composites of $1,900[{^\circ}C]$ sintering temperature at room temperature respectively. The electrical resistivity was measured by the Pauw method in the temperature ranges from $25[{^\circ}C]\;to\;700[{^\circ}C]$, The electrical resistivity showed the value of $1.36{\times}10^{-4},\;3.83{\times}10^{-4},\;3.51{\times}10^{-4}\;and\; 3.2{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively at room temperature. The electrical resistivity of the composites was all PTCR(Positive Temperature Coefficient Resistivity). The resistance temperature coefficient showed the value of $4.194{\times}10^{-3},\;3,740{\times}10^{-3},\;2,993{\times}10^{-3},\;3,472{\times}10^{-3}/[^{\circ}C}$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively in the temperature ranges from $25[{\circ}C]\;to\;700[{\circ}C]$, It is assumed that because polycrystallines such as recrystallized $SiC-ZrB_2$ electroconductive ceramic composites, contain of porosity and In Situ $YAG(Al_5Y_3O_{12})$ crystal grain boundaries, their electrical conduction mechanism are complicated. In addition, because the condition of such grain boundaries due to $Al_2O_3+Y_2O_3$ additives widely varies with sintering temperature, electrical resistivity of the $SiC-ZrB_2$ electroconductive ceramic composites with sintering temperature also varies with sintering condition. It is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

상압소결(常壓燒結)한 $SiC-TiB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Annealing 온도(溫度)의 영향(影響) (Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-TiB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권10호
    • /
    • pp.467-474
    • /
    • 2006
  • The effect of pressureless-sintered temperature on the densification behavior, mechanical and electrical properties of the $SiC-TiB_2$ electroconductive ceramic composites was investigated. The $SiC-TiB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at temperatures in the range of $1,750{\sim}1,900[^{\circ}C]$, with an addition of 12[wt%] $Al_2O_3+Y_2O_3(6:4\;mixture\;of\;Al_2O_3\;and\;Y_2O_3)$ as a sintering aid. The relative density, flexural strength, vicker's hardness and fracture toughness showed the highest value of 84.92[%], 140[MPa], 4.07[GPa] and $3.13[MPa{\cdot}m^{1/2}]$ for $SiC-TiB_2$ composites of $1,900[^{\circ}C]$ sintering temperature at room temperature respectively. The electrical resistivity was measured by the Pauw method in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The electrical resistivity showed the value of $5.51{\times}10^{-4},\;2.11{\times}10^{-3},\;7.91{\times}10^{-4}\;and\;6.91{\times}10^{-4}[\Omega{\cdot}cm]$ for ST1750, ST1800, ST1850 and ST1900 respectively at room temperature. The electrical resistivity of the composites was all PTCR(Positive Temperature Coefficient Resistivity). The resistance temperature coefficient showed the value of $3.116{\times}10^{-3},\;2.717{\times}10^{-3},\;2.939{\times}10^{-3},\;3.342{\times}10^{-3}/[^{\circ}C]$ for ST1750, ST1800, ST1850 and ST1900 respectively in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. It is assumed that because polycrystallines, such as recrystallized $SiC-TiB_2$ electroconductive ceramic composites, contain of porosity and In Situ $YAG(Al_5Y_3O_{12})$ crystal grain boundaries, their electrical conduction mechanism are complicated. In addition, because the condition of such grain boundaries due to $Al_2O_3+Y_2O_3$ additives widely varies with sintering temperature, electrical resistivity of the $SiC-TiB_2$ electroconductive ceramic composites with sintering temperature also varies with sintering condition. It is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

상압소결(常壓燒結)한 SiC-$ZrB_2$ 도전성(導電性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive)

  • 신용덕;주진영;고태헌;이정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1230-1231
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of 8${\sim}$20[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.01[%], 81.58[Mpa], 31.437[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. In this paper, it is convinced that ${\beta}$-SiC based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

  • PDF

방전플라즈마 소결에 의한 자기 통전식 SiC계 세라믹 발열체 개발 (Development of Electroconductive SiC Ceramic Heater by Spark Plasma Sintering)

  • 신용덕;최원석;고태헌;이정훈;주진영
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.770-776
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 30, 45[vol.%] $ZrB_2$ powders as a second phase to SiC matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(SPS) were investigated. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed in the XRD and the phase analysis of the electroconductive SiC ceramic composites. The relative density of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively 99.24[%], 87.53[%], 96.41[%] and 98.11[%] Phase analysis of the electroconductive SiC ceramic composites by XRD revealed mostly of ${\beta}$-SiC, $ZrB_2$ and weakly of $ZrO_2$ phase. The flexural strength showed the lowest of 114.44[MPa] for ${\beta}$-SiC+15[vol.%]$ZrB_2$ powders and showed the highest of 210.75[MPa] for composite no added with $ZrB_2$ powders at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites is accorded with the trend of the relative density. The electrical resistivity of the electroconductive SiC ceramic composites decreased with increased $ZrB_2$ contents. The electrical resistivity of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively $4.57{\times}10^{-1},\;2.13{\times}10^{-1},\;2.68{\times}10^{-2}\;and\;1.99{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature. The electrical resistivity of mono ${\beta}$-SiC and ${\beta}$-SiC+15[vol.%]$ZrB_2$ are negative temperature coefficient resistance(NTCR) in temperature ranges from $25[^{\circ}C]\;to\; 100[^{\circ}C]$. The electrical resistivity of ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]ZrB_2$ are positive temperature coefficient resistance(PTCR) in temperature ranges from $25[^{\circ}C]\;to\;100[^{\circ}C]$. It is convinced that ${\beta}$-SiC+30[vol.%]$ZrB_2$ composites by SPS for heater or ignitors can be applied.

무가압소결한 $\beta$-SiC-$ZrB_2$계 도전성 복합체의 제조 및 기계적, 전기적 특성 (Mechanical, Electrical Properties and Manufacture of the $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites by Pressureless Sintering)

  • 신용덕;권주성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권2호
    • /
    • pp.98-103
    • /
    • 1999
  • The effect of $Al_2O_3$ additives to $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composites by pressureless sintering on microstructural, mechanical and electrical properties were investigated. The $\beta-SiC+39vol.%ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_2O_3$ powder as a liquid forming additives at $1950^{\cire}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha-SiC(6H), ZrB_2$ and weakly $\alpha-SiC(4H), \beta-SiC (15R)$ phase. The relative density of composites was lowered by gaseous products of the result of reaction between \beta-SiC and Al_2O_3$, therefore, porosity was increased with increasing $Al_2O_3$ contents, and showed the maximum value of 1.4197MPa.$m^{1/2}$ for composite with 4wt.% $Al_2O_3$ additives. The electrical resistivity of $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composite was increased with increasing $Al_2O_3$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\cire}C$ to $700^{\cire}C$.

  • PDF

YAG와 기공에 의한 $SiC-TiB_2$ 전도성세라믹 복합체의 특성 평가 (Estimation of the Properties for the $SiC-TiB_2$ Electroconductive Ceramic Composites by YAG and Porosity)

  • 신용덕;이동윤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권11호
    • /
    • pp.544-549
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and pressureless annealed SiC-39vo1.%TiB$_2$electroconductive ceramic composites were investigated as functions of the liquid additives of $Al_2O_3+Y_2O_3$ and the sintering temperature. The result of phase analysis for the SiC-39vo1.%TiB$_2$ composites by XRD revealed $\alpha -SiC(6H),\; TiB_2,\; and YAG(Al_5Y_3O_{12})$ crystal phase. The relative density of SiC-39vo1.% $TiB_2$ composites was increased with increased $Al_2O_3+Y_2O_3$ contents. The fracture toughness showed the highest value of $7.8 MPa.m_{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$additives at $1750^{\circk}C$. The electrical resistivity of the SiC-39vo1.%$TiB_2$composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25S^{\circ}C \;to\; 700^{\circ}C$.

  • PDF

상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영;고태헌;이정훈
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

SiC계 세라믹 발열체의 최적 설계에 관한 연구 (A Study on The Optimal Design of SiC Ceramic Heater)

  • 조현섭
    • 한국산학기술학회논문지
    • /
    • 제10권7호
    • /
    • pp.1631-1634
    • /
    • 2009
  • SiC에 기초한 도전성 복합체의 최적 설계 요소와 세라믹 제조기법을 찾고 발열체 제작을 위한 기초기반 기술을 확보하였다. 제품 응용시 세라믹 발열체를 하나의 몸체로 제작하여 접촉 저항을 최대한 줄이면 sheath 발열체보다 1.1배 느린 초기 상승 온도 속도를 높일 수 있고, 보온력에서는 SiC계 세라믹 발열체가 sheath 발열체보다 약 2.7배 높기 때문에 제품의 사용 기간이 길어질수록 에너지 절감 효과를 얻을 수 있어, 경제성 면에서 대단히 유리하게 평가 된다.

SiC-ZrB$_2$계 도전성 복합 세라믹스의 방전가공 (Electrical discharge Machining of SiC-ZrB$_2$Electroconductive Ceramic Composities)

  • 신용덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.320-325
    • /
    • 1996
  • The influences of ZrB$_2$additives to the SiC and pulse width on electrical discharge machining of SiC-ZrB$_2$electroconductive ceramic composites were investigated. IIigher-flexural strength materials show a trend toward smaller crater volumes, leaving a soother surface; the average surface roughness of the SiC-ZrB$_2$15 Vol.% Composite with the flexural strength of 375㎫ was 3.2${\mu}{\textrm}{m}$,whereas the SiC-ZrB$_2$30 Vol.% composite of 457㎫ was 1.35${\mu}{\textrm}{m}$. In the SEM micrographs of the fracture surface of SiC-ZrB$_2$composites, the SiC-ZrB$_2$two phaes are distinct; the white phase is the ZrB$_2$. In the micrograph of the EDM surface, however, these phases are no longer distinct because of thicker recast layer of resolidified-melt-formation droplets present.

  • PDF

방전플라즈마 소결에 의한 SiC-$ZrB_2$ 도전성 세라믹 복합체 특성 (Properties of SiC-$ZrB_2$ Electroconductive Ceramic Composites by Spark Plasma Sintering)

  • 신용덕;주진영;조성만;이정훈;김철호;이희승
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1252_1253
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 20, 25[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(hereafter, SPS) were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed in the XRD analysis The relative density of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 90.97[%], 74.62[%], 77.99[%] and 72.61[%] respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of ZrO2 phase. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are $4.57{\times}10^{-1}$, $2.13{\times}10^{-1}$, $1.53{\times}10^{-1}$ and $6.37{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature, respectively. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ are Negative Temperature Coefficient Resistance(hereafter, NTCR) in temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$]. It is convinced that SiC+20[vol.%]$ZrB_2$ composite by SPS can be applied for heater above 1000[$^{\circ}C$].

  • PDF