• Title/Summary/Keyword: Electrochemical luminescence (ECL)

Search Result 4, Processing Time 0.018 seconds

Fabrication of ZnO Nanorod-based Electrochemical Luminescence Cells and Fundamental Luminescence Properties (산화아연 나노로드 전극을 이용한 전기화학발광 셀의 제작 및 발광특성 고찰)

  • Oh, Hyung-Suk;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.76-79
    • /
    • 2014
  • We report Zinc oxide (ZnO) nanorods synthesis and electrochemical luminescence (ECL) cell fabrication. The ECL cell was fabricated using the electrode of ZnO nanorods and Ru(II) complex ($Ru(bpy)_3{^{2+}}$) as a luminescence materials. The fabricated ECL cell is composed of F-doped $SnO_2$ (FTO) glass/ Ru(II)/ZnO nanorods/FTO glass. The highest intensity of the emitting light was obtained at the wavelength of ~620 nm which corresponds to dark-orange color. At a bias voltage of 3V, the measured ECL efficiencies were 5 $cd/m^2$ for cell without ZnO nanorod, 145 $cd/m^2$ for ZnO nanorods-$5{\mu}m$, 208 $cd/m^2$ for ZnO nanorods-$8{\mu}m$ and 275 $cd/m^2$ for ZnO nanorods-$10{\mu}m$, respectively. At a bias voltage of 3.5V, the use of ZnO nanorods increases ECL intensities by about 3 times compared to the typical ECL cell without the use of ZnO nanorods.

Comparison of Luminescence Properties of Electrochemical Luminescence Cells for Various Electrode Materials and Structures

  • Pooyodying, Pattarapon;Ok, Jung-Woo;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1605-1610
    • /
    • 2017
  • The electrochemical luminescence (ECL) device was investigated, which has similar structure to the dye-sensitized solar cell. The structure of the ECL cell in this experiment reliably induces a large amount of the oxidation around electrodes. The band gap of the ECL electrode is of 3.0 - 3.2 eV. Titanium dioxide ($TiO_2$) nanoparticle has following properties: a band gap of 3.4 eV, a low-priced material, and 002 preferred orientation (Z-axis). Zinc Oxide (ZnO) nanorod is easy to grow in a vertical direction. In this paper, in order to determine material suitable for the ECL device, the properties of various materials for electrodes of ECL devices such as ZnO nanorod (ZnO-NR) and $TiO_2$ nanoparticle ($TiO_2-NP$) were compared. The threshold voltage of the light emission of the ZnO-NR was 2.0 V which is lower than 2.5 V of $TiO_2-NP$. In the other hand, the luminance of $TiO_2-NP$ was $44.66cd/m^2$ and was higher than that of $34cd/m^2$ of ZnO-NR at the same applied voltage of 4 V. Based on the experimental results, we could conclude that $TiO_2-NP$ is a more suitable electrode material in ECL device than the ZnO-NR.

Investigation of Glass Substrate Sealing for ECL Application using Laser Welding Technology (레이저 웰딩 기술을 이용한 ECL용 유리 기판 접합에 대한 고찰)

  • Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.28-32
    • /
    • 2015
  • In this work, we reported fabrication of sealing the glass substrate using laser treatment at low temperature for electrochemical luminescence (ECL) cell. The laser treatment at temperature is using laser diode. The glass substrate sealing by laser treatment tested at 3-10W, 2-5 mm/s for build and tested. The sealing laser treatment method will allow associate coordination between the two glass substrate was enclosed. The effect of laser treatment to sealing the glass substrate was found to have cracks and air gap at best thickness of about 550-600 im for condition 3 W, 3 mm/s. The surface of sealing was roughness which was not influent to electrodes It can reduce the cracks, crevices and air gaps as well, improves the performance viscosity in butter bus bar electrodes. Therefore, it is more effective viscosity between two FTO glasses substrate.

The Low Temperature Laser Treatment of Sealing Glass Substrate for ECL (ECL용 유리기판의 레이저 저온 실링처리)

  • Choi, Hye-Su;Park, Cha-Soo;Gwak, Dong-Joo;Sung, Youl-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1134-1135
    • /
    • 2015
  • In this paper, we reported fabrication of sealing the glass substrate using laser treatment at low temperature for electrochemical luminescence (ECL) cell. The laser treatment at temperature is using laser diode. The glass substrate sealing by laser treatment tested at 1-5 W, 1-5 mm/s for builted and tested. The sealing laser treatment method will allow associate coordination between the two glass substrate was enclosed. The effect of laser treatment to sealing the glass substrate was found to have cracks and air gap at best thickness of about $845-780{\mu}m$ for condition 5 W, 1-5 mm/s. The surface of sealing was roughness which was not influent to electrodes So, it is more effective viscosity between two glasses substrate.

  • PDF