• 제목/요약/키워드: Electrochemical instrument

검색결과 16건 처리시간 0.02초

A New Algorithm Design for the Real-time Electrochemical Impedance Monitoring System

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권4호
    • /
    • pp.154-158
    • /
    • 2012
  • It is generally known that electrochemical impedance spectroscopy is a powerful technique and its real-time application has been demanded for prompt observations on instantaneous electrochemical changes. Nevertheless, long measurement time and laborious analysis procedures have hindered development of it. Solving the problems, here I report of a new algorithm design for development of a real-time electrochemical impedance monitoring system, which potentially provides a guideline in developing monitoring systems of electric vehicles batteries and other electrochemical power plants. The significant progress in this report is employment of the parallel processing protocol which connects independent sub functions to successfully operate with avoiding mutual interruptions. Therefore, all the processes required to monitor electrochemical impedance changes in realtime are properly operated. To realize the conceptual scheme, a Labview program was coded with sub functions units which conduct their processes individually and only data are transferred between them through the parallel pipelines. Finally, measured impedance spectra and analysis results are displayed, which are synchronized according to the time of change.

고압 배터리 팩의 임피던스 스펙트럼 측정용 휴대용 임피던스 분광기 (A Portable Impedance Spectroscopy Instrument for the Measurement of the Impedance Spectrum of High Voltage Battery Pack)

  • 굴 라힘;최우진
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.192-198
    • /
    • 2021
  • The battery's State of Health (SOH) is a critical parameter in the process of battery use, as it represents the Remaining Useful Life (RUL) of the battery. Electrochemical Impedance Spectroscopy (EIS) is a widely used technique in observing the state of the battery. The measured impedance at certain frequencies can be used to evaluate the state of the battery, as it is intimately tied to the underlying chemical reactions. In this work, a low-cost portable EIS instrument is developed on the basis of the ARM Cortex-M4 Microcontroller Unit (MCU) for measuring the impedance spectrum of Li-ion battery packs. The MCU uses a built-in DAC module to generate the sinusoidal sweep perturbation signal. Moreover, it performs the dual-channel acquisition of voltage and current signals, calculates impedance using a Digital Lock-in Amplifier (DLA), and transmits the result to a PC. By using LabVIEW, an interface was developed with the real-time display of the EIS information. The developed instrument was suitable for measuring the impedance spectrum of the battery pack up to 1000 V. The measurement frequency range of the instrument was from 1 hz to 1 Khz. Then, to prove the performance of the developed system, the impedance of a Samsung SM3 battery pack and a Bexel pouch module were measured and compared with those obtained by the commercial instrument.

전기화학적 산소요구량 측정용 이산화납 전극 센서의 유효성 (Effectiveness of the Sensor using Lead Dioxide Electrodes for the Electrochemical Oxygen Demand)

  • 김홍원;정남용
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.575-581
    • /
    • 2012
  • The electrochemical oxygen demand (ECOD) is an additional sum parameter, which has not yet found the attention it deserves. It is defined as the oxygen equivalent of the charge consumed during an electrochemical oxidation of the solution. Only one company has yet developed an instrument to determine the ECOD. This instrument uses $PbO_2$-electrodes for the oxidation and has been successfully implemented in an automatic on-line monitor. A general problem of the ECOD determination is the high overpotential of electrochemical oxidations of most organic compounds at conventional electrodes. Here we present a new approach for the ECOD determination, which is based on the use of a solid composite electrodes with highly efficient electro-catalysts for the oxidation of a broad spectrum of different organic compounds. Lead dioxide as an anode material has found commercial application in processes such as the manufacture of sodium per chlorate and chromium regeneration where adsorbed hydroxyl radicals from the electro-oxidation of water are believed to serve as the oxidizing agent. The ECOD sensors based on the Au/$PbO_2$ electrode were operated at an optimized applied potential, +1.6 V vs. Ag/AgCl/sat. KCl, in 0.01 M $Na_2SO_4$ solution, and reduced the effect of interference ($Cl^-$ and $Fe^{2-}$) and an expended lifetime (more than 6 months). The ECOD sensors were installed in on-line auto-analyzers, and used to analyze real samples.

역충전재 및 치근단 절제 각도와 와동 형성 기구에 따른 역충전물의 변연 누출에 관한 전기화학적 연구 (AN ELECTROCHEMICAL STUDY ON MICROLEAKAGE OF RETROGRADE FILLING USING DIFFERENT RETROGRANE FILLING MATERIALS, ROOT RESECTION ANGLE AND CAVITY PREPARATION INSTRUMENTS)

  • 김진우;임성삼
    • Restorative Dentistry and Endodontics
    • /
    • 제19권2호
    • /
    • pp.499-512
    • /
    • 1994
  • The purpose of this study was to evaluate the microleakage electrochemically using different retrograde filling materials, different root resection angle, and different cavity preparation instruments. 104 extracted single-rooted teeth were selected for this study. 100 teeth were used as experimental groups and four was used as controls. Anatomical crowns were resected, root canals were prepared, and the apical 2 mm of roots were removed. The experimental roots were randomly divided into five equal groups. Experimental groups : Group 1. no bevel, cavity preparation with ultrasonic instruments, amalgam filling Group 2. no bevel, cavity preparation with ultrasonic instruments, SuperEBA cement filling Group 3. no bevel, cavity preparation with ultrasonic instruments, desiccated ZOE filling Group 4. $45^{\circ}$ bevel, cavity preparation with ultrasonic instruments, amalgam filling Group 5. no bevel, cavity preparation with conventional bur, amalgam filling Microleakage was measured once a day for 30 days using electrochemical method and were analyzed statistically. The results were as follows : 1. The group with Super EBA cement filling showed the least marginal leakage from second to fourth day(p<0.05), there was no significant difference between the group with amalgam filling during eighth to eighteenth day(p>0.05), but after the nineteenth day here was a higher marginal leakage than the group with amalgam filling(p<0.05). 2. The group with desiccated ZOE filling demostrated that the highest marginal leakage, started on the eighth day(p<0.05). 3. The group using ultrasonic instrument showed lower marginal leakage than the group using bur until the nineteenth day(p<0.05), but there was no significant differnce with the group using bur after twentythird day(p>0.05). 4. The group without bevel showed lower marginal leakage than the group with bevel (p<0.05). 5. Whether bevel or nor had much more effect on marginal leakage than with cavity perparation instrument when the cavity was retrogrdefilled with amalgam(stepwise regression).

  • PDF

배터리의 잔여 수명 평가를 위한 고압 임피던스 분광장치의 개발. (Development of the High Voltage EIS Instrument for the Evaluation of the Residual Useful Life of the Batteries)

  • Farooq, Farhan;khan, Asad;Lee, Seung June;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.216-217
    • /
    • 2019
  • The battery powered electric vehicle (EV) is one of most promising technologies in 21st century. Though the lithium batteries are playing an important role in the EVs, they are only applicable until their capacities reach 80%, the end of its useful first life. Yet, these batteries can live a second life such as Energy Storage Systems (ESS). In order to utilize the Residual Useful Life (RUL) of the batteries the State of Health (SOH) of them needs to be estimated by a nondestructive test such as Electrochemical Impedance Spectroscopy (EIS) technique. Though many kinds of different EIS instruments are commercially available, most of them can only test a battery module less than 10V and the price of the instrument is very high. In this paper a low-cost EIS instrument suitable for measuring the impedance spectrum of the high voltage battery module is proposed and its validity is verified through the experiments. In order to prove the accuracy of the developed EIS instrument its measured impedance spectrum is compared with the results obtained by a commercial instrument. The Chi Square value calculated between two impedance spectrum measured by both developed and commercial instruments are less than 2%, which prove the strong correlation between two results.

  • PDF

Corrosion Prediction of Metallic Cultural Heritage Assets by EIS

  • Angelini, E.;Grassini, S.;Parvis, M.;Zucchi, F.
    • Corrosion Science and Technology
    • /
    • 제18권4호
    • /
    • pp.121-128
    • /
    • 2019
  • Electrochemical Impedance Spectroscopy (EIS) was used to predict corrosion behaviour of metallic Cultural Heritage assets in two monitoring campaigns: 1) an iron bar chain exposed indoor from over 500 years in the Notre Dame Cathedral in Amiens (France); and 2) a large weathering steel sculpture exposed outdoor from tens of years in Ferrara (Italy). The EIS portable instrument employed was battery operated. In situ EIS measurements on the iron chain could be used to investigate the phenomena involved in the electrochemical interfaces among various corrosion products and assess and predict their corrosion behaviour in different areas of the Cathedral. Meanwhile, the sculpture of weathering steel, like most outdoor artefacts, showed rust layers of different chemical composition and colour depending on the orientation of metal plates. The EIS monitoring campaign was carried out on different areas of the artefact surface, allowing assessment of their protective effectiveness. Results of EIS measurements evidenced how employing a simple test that could be performed in situ without damaging the artefacts surface is possible to quickly gain knowledge of the conservation state of an artefact and highlight potential danger conditions.

리튬배터리의 잔여 유효 수명 추정을 위한 배터리 모듈용 AC 임피던스 스펙트럼 측정장치 (An AC Impedance Spectrum Measurement Device for the Battery Module to Predict the Remaining Useful Life of the Lithium-Ion Batteries)

  • 이승준;파르한 파루크;칸 아사드;최우진
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.251-260
    • /
    • 2020
  • A growing interest has emerged in recycling used automobile batteries into energy storage systems (ESSs) to prevent their harmful effects to the environment from improper disposal and to recycle such resources. To transform used batteries into ESSs, composing battery modules with similar performance by grading them is crucial. Imbalance among battery modules degrades the performance of an entire system. Thus, the selection of modules with similar performance and remaining life is the first prerequisite in the reuse of used batteries. In this study, we develop an instrument to measure the impedance spectrum of a battery module to predict the useful remaining life of the used battery. The developed hardware and software are used to apply the AC perturbation to the used battery module and measure its impedance spectrum. The developed instrument can measure the impedance spectrum of the battery module from 0.1 Hz to 1 kHz and calculate the equivalent circuit parameters through curve fitting. The performance of the developed instrument is verified by comparing the measured impedance spectra with those obtained by a commercial equipment.

무도장 내후성강의 장기 내식성 및 그 현장즉시측정법 (Long-term corrosion-resistance of an uncoated weathering steel and its on-line and in-situ measurements)

  • 박정렬;김규영
    • 한국강구조학회 논문집
    • /
    • 제16권4호통권71호
    • /
    • pp.415-423
    • /
    • 2004
  • 옥외 강구조물의 중요 소재인 무도장 내후성강의 장기 내식성을 평가하기 위해 우선 9년 이상 산업대기와 전원대기에 폭로된 본 강판 및 비교재 일반강판 시편의 천향면에 대해 중성의 인공우수에 침적시켜 전기화학적 부식전위, 임피던스 및 동전위 양분극 곡선으로 측정 및 그 결과를 고찰하였다. 산업대기 및 전원대기에 천향면으로 폭로된 내후성강 표면에는 부동태적인 안정화 녹층이 발달하였으며, 산업대기 폭로 표면의 인공우수에서의 부식속도는 $3{{\mu}m}/y$로 측정되어 우수한 내후내식 녹층으로 덮혀 있었다. 지속적으로 인공우수에 침적시키면 모든 시편 녹층은 점진적으로 열화되어 모재 철분의 양극산화용해 율속의 부식으로 진전됨을 나타내었다. 내후성 합금성분은 이런 부식의 진전을 지연시키고 있었다. 장기 내식성을 잘 평가하기 위해서는 9년보다 훨씬 장기간 대기폭로된 강재표면과 해당 대기 응축수 모사 수용액을 이용한 전기화학적 측정이 필요하다. 특히 본 측정방법들은 강재 표면의 원하는 부위와 폭로시간대에 거의 비파괴적으로 부식상황과 녹층의 상태와 정량적인 부식속도를 직접 바로 측정할 수 있게 하므로 강재를 사용한 교량, 탑, 건축물 등의 강구조물의 표면에 전기화학적 cell을 구성하고 이동측정기를 사용하면 강구조물의 내후 내식성을 현장즉시 측정 및 평가를 효과적으로 가능하게 할 수 있다.

고분자전해질형 연료전지의 냉각유체에 대한 연구 (Cooling Fluid Study in Proton Exchange Membrane Fuel Cell)

  • 김준범;이흥주
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2005년도 수소연료전지공동심포지움 2005논문집
    • /
    • pp.93-96
    • /
    • 2005
  • 고분자전해질형 연료전지에서는 수소이온의 이온전도성 저하를 방지하기 위하여 외부에서 가습하여 주는 방식이 일반적이지만, 가습에 소요되는 부품을 일부라도 제거할 경우 연료전지의 효율은 높이고 제작단가도 경감할 수 있다. 이를 위하여 저가습 및 무가습 실험을 수행하였으며, 정확한 data의 수집과 시험장비의 자동제어를 위하여 National Instrument사의 compact field point (cFP)를 사용하였다. Humidifier와 heater의 온도를 조절하여 공급유체의 상대습도 및 온도를 각각 조절하였으며, 이에 필요한 이론적 온도는 Antoine equation 을 사용하여 산정하였다. Anode와 cathode 양측 $100\%$ 가습 경우를 기준으로 가습량을 조절하면서 실험을 수행하였으며 성능 차이를 그래프로 도시하여 양측의 변화에 대한 영향을 볼수 있도록 하였다. Stack의 온도가 $70^{\circ}C$이고 양측 무가습일 경우에 성능 측정이 어려워서 stack의 온도를 저온에서부터 변화시키면서 무가습 성능을 실시간으로 측정하여 보았다. 일반적으로 hydronium ion은 anode측에서 cathode측으로 계속 이동하여야 전기를 생성할 수 있으므로 cathode측 무가습이 anode측 무가습보다 성능이 더 잘 나오는 것으로 예측하였으나 이와 반대되는 경향의 실험 결과를 얻었다. 양측 무가습의 경우에는 공기 중의 상대습도와 back diffusion 등에 영향을 받을 수 있으므로 각종 변수들의 영향을 분리하여 관찰할 수 있는 실험을 수행 중에 있다.

  • PDF

포텐티오메트릭 4-전극 용기에 의한 전도도 측정 (Electrolytic Conductance Measurement using Four-Electrode Cell and Potentiometric Circuit)

  • 천정균;백운기
    • 대한화학회지
    • /
    • 제20권2호
    • /
    • pp.129-135
    • /
    • 1976
  • 4-전극 측정 용기와 정전위 전자회로를 써서 직독식 전기전도도 측정장치를 고안하여 KCl, HCl등 전해질 용액의 전기전도도를 측정하였다. 이 장치는 상용되고 있는 브릿지회로와 2-전극 용기를 쓰는 방법에서 당면하는 어려운 문제들, 특히 전극에서의 전기 이중층의 존재와 파라디임피던스 등으로 나타나는 전기화학적으로 복잡한 성질들로 인한 문제들을 피하여 정밀하고 간편한 측정에 쓰이도록 만들었다.

  • PDF