• 제목/요약/키워드: Electrochemical capacitance

검색결과 363건 처리시간 0.018초

Electrochemical Behavior of AZ31 Mg Alloy in Neutral Aqueous Solutions Containing Various Anions

  • Duyoung Kwon;Hien Van Pham;Pungkeun Song;Sungmo Moon
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.311-319
    • /
    • 2023
  • This work was performed to characterize the electrochemical behavior of AZ31 Mg alloy in neutral aqueous solutions where Cl-, SO42-, PO43-, and F- ions were present and pH was adjusted to 6 to exclude the contribution of H+ and OH- ions. Open-circuit potential (OCP) transient, electrochemical impedance spectroscopy (EIS) and potnetiodynamic polarization curves were employed. The OCP value appeared to decrease in the order of F- > Cl- > SO42- > PO43- ions while corrosion current density increased in the same order. Electrochemical impedance spectroscopy (EIS) data showed two capacitive arcs in all the solutions and one more inductive arc appeared in PO43--containing solution. By fitting of two capacitive arcs, capacitance of dense film (Cdf), resistance of porous film (Rpf) and double layer capacitance (Cdl) and charge transfer resistance (Rct) beneath the porous films were obtained. A simplified model in which various thicknesses and coverages of dense and porous films are assumed to be present on the AZ31 Mg alloy surface, is suggested to explain the effects of four different anions on the electrochemical behavior of AZ31 Mg alloy.

금 입자 증착된 탄소나노튜브의 커패시턴스 증가 및 박막형 이온 선택성 전극으로서의 특성 평가 (Capacitance Enhancement and Evaluation of Gold-Deposited Carbon Nanotube Film Ion-Selective Electrode)

  • 김도연;손한별;임효령
    • 한국분말재료학회지
    • /
    • 제30권4호
    • /
    • pp.310-317
    • /
    • 2023
  • Small-film-type ion sensors are garnering considerable interest in the fields of wearable healthcare and home-based monitoring systems. The performance of these sensors primarily relies on electrode capacitance, often employing nanocomposite materials composed of nano- and sub-micrometer particles. Traditional techniques for enhancing capacitance involve the creation of nanoparticles on film electrodes, which require cost-intensive and complex chemical synthesis processes, followed by additional coating optimization. In this study, we introduce a simple one-step electrochemical method for fabricating gold nanoparticles on a carbon nanotube (Au NP-CNT) electrode surface through cyclic voltammetry deposition. Furthermore, we assess the improvement in capacitance by distinguishing between the electrical double-layer capacitance and diffusion-controlled capacitance, thereby clarifying the principles underpinning the material design. The Au NP-CNT electrode maintains its stability and sensitivity for up to 50 d, signifying its potential for advanced ion sensing. Additionally, integration with a mobile wireless data system highlights the versatility of the sensor for health applications.

Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation

  • Ehsani, A.;Safari, R.;Yazdanpanah, H.;Kowsari, E.;Shiri, H. Mohammad
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권4호
    • /
    • pp.301-307
    • /
    • 2018
  • The current study fabricated magnetic functional reduced graphene oxide (MFRGO) by relying on ${FeCl_4}^-$ magnetic anion confined to cationic 1-methyl imidazolium. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid poly ortho aminophenol (POAP)/ MFRGO films have then been fabricated by POAP electropolymerization in the presence of MFRGO nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of MFRGO and POAP/ MFRGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability (capacitance retention of ~91% even after 1000 cycles). These results suggest that electrosynthesized composite films are a promising electrode material for energy storage applications in high-performance pseudocapacitors.

Asymmetric Supercapacitors Based on Co3O4@MnO2@PPy Porous Pattern Core-Shell Structure Cathode Materials

  • Wang, Zihan;Pan, Shuang;Wang, Bing;Qi, Jingang;Tang, Lidan;Liu, Liang
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권3호
    • /
    • pp.346-357
    • /
    • 2021
  • In recent years, supercapacitors have been developed rapidly as a rechargeable energy storage device. And the performance of supercapacitors is depending on electrode materials, the preparation method and performance of electrode materials have become the primary goal of scientific development. This study synthesizes Co3O4@MnO2@PPy cathode material with porous pattern core-shell structure by hydrothermal method and electrodeposition. The result samples are characterized by X-ray diffraction transmission/scanning electron microscope, and X-ray photoelectron spectroscopy. Electrochemical evaluation reveals that electrochemical performance is significantly enhanced by PPy depositing. The specific capacitance of Co3O4@MnO2@PPy is 977 F g-1 at 1 A g-1, the capacitance retention rate of 105%. Furthermore, the electrochemical performance of Co3O4@MnO2@PPy//AC asymmetric supercapacitor assembles with AC as the negative electrode material is significantly better than that of MnO2//AC and Co3O4@MnO2//AC. The capacity of Co3O4@MnO2@PPy//AC is 102.78 F g-1. The capacity retention rate is still 120% for 5000 charge-discharge cycles.

Growth and Electrochemical Behavior of Poly[Ni(saldMp)] on Carbon Nanotubes as Potential Supercapacitor Materials

  • Zhang, Yakun;Li, Jianling;Kang, Feiyu;Wang, Xindong;Ye, Feng;Yang, Jun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1972-1978
    • /
    • 2012
  • The polymer of (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), Ni(saldMp), was deposited on multi-walled carbon nanotubes (MWCNTs) substrate by the route of potential linear sweep. The nano structures of poly[Ni(saldMp)] have been obtained by adjusting the monomer concentration of 0.1, 0.2, 0.5, 1.0 and 1.5 mmol $L^{-1}$. The poly[Ni(saldMp)] prepared in acetonitrile solution with monomer concentration of 1.0 mmol $L^{-1}$ shows the fastest growth rate. The effects of potential window on charge-discharge efficiency and electrodeposition scan number on capacitance performance were discussed. Poly[Ni(saldMp)] prepared with less electrodeposition scans exhibits higher capacitance, but this goes against the improvement of the whole electrode capacitance. Sample with 8 deposition scans is the best compromise with the geometric specific capacitance 3.53 times as high as that of pure MWCNTs, and 1.24 times for the gravimetric specific capacitance under the test potential window 0.0-1.0 V.

Analysis of Bulk Concentration on Double-Layer Structure for Electrochemical Capacitors

  • Khaing, Khaing Nee Nee;Hla, Tin Tin
    • 한국재료학회지
    • /
    • 제32권7호
    • /
    • pp.313-319
    • /
    • 2022
  • Double-layer capacitors (DLCs) are developed with high surface electrodes to achieve a high capacitance value. In the present work, the initial bulk concentration of 1 mol/m3 and 3 mol /m3 are selected to show the consequential effects on the performance of a double-layer capacitor. A 1D model of COMSOL Multiphysics has been developed to analyze the electric field and potential in cell voltage, the electric displacement field and polarization induced by the field, and energy density in a double-layer structure. The electrostatics and the electric circuit modes in COMSOL are used to simulate the electrochemical processes in the double-layer structure. The analytical analysis of a double-layer capacitor with different initial bulk concentrations is investigated by using Poisson-Nernst-Plank equations. From the simulation results, the differential capacitance changes as a function of compact layer thickness and initial bulk concentration. The energy density varies with the differential capacitance and voltage window. The values of energy density are dominated by the interaction of ions in the solution and electrode surface.

Electrochemical Properties of PPy/CNT Electrodes Prepared by Chemical Process for Ultracapacitor

  • Shin, Jeong-Gyun;Park, Soo-Gil
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.141-144
    • /
    • 2007
  • Polypyrrole(PPy) was composite with MWNT to attain cycle stable by chemical method. We have been considered PPy is the ideal material for high energy density electrochemical capacitor due to pseudo capacitor reaction. In this study we found that increase in cycle life due to composite MWNT. Also PPy/MWNT composite material have resulted larger capacitance and exhibits better electrochemical behavior. The structural feature was investigated by using SEM and TEM. The PPy/CNT composite is not only a promising ultracapacitor material for energy storages but also has a good possibility because of its great capacitive properties, simple preparation and low cost.

Electrochemical Properties of Trimethylammonium Tetrafluoroborate in Electrochemical Double-Layer Capacitors

  • Lee, Sooyeon;Lee, Kyung Min;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.254-260
    • /
    • 2022
  • Trimethylammonium tetrafluoroborate (TriMA BF4), consisting of the smallest trialkylammonium ion, was investigated for use in electrochemical double-layer capacitors. Despite the presence of a proton in TriMA+, cycle life tests in acetonitrile (AN) and -butyrolactone (GBL) showed a good capacity retention with a 1.8 V cut-off voltage. The rate of electrolysis of TriMA BF4 in GBL was lower than that in AN because of the lower conductivity in GBL. As a consequence, the cells based on GBL achieved a higher capacitance and longer life than those with AN. TriMA BF4 had a higher conductivity and lower viscosity than the quaternary salt tetraethylammonium tetrafluoroborate in GBL, as well as higher ionic mobility, these factors resulted in a higher rate capability.

PEDOT:PSS/Single Wall Carbon Nanotube Composite Nanoparticles as an Additive for Electric-double Layer Capacitor

  • Park, Jong Hyeok;Lee, Sang Young;Kim, Jong Hun;Ahn, Sunho
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권3호
    • /
    • pp.143-148
    • /
    • 2012
  • The unique effects of highly conductive conducting polymer/SWNT (single walled carbon nanotube) composite nanoparticles in electric double layer capacitors are studied for the enhancement of the adhesive properties, specific capacitance and power characteristics of the electrode. Because the conducting polymer/SWNT composite material, which is believed to act as a polymer binder, an active material for charge storage and a conducting agent, is well distributed on the activated carbon, greatly enhanced adhesion properties, cell capacitance and power characteristics were obtained.

Electrodeposited Nano-flakes of Manganese Oxide on Macroporous Ni Electrode Exhibiting High Pseudocapacitance

  • Gobal, F.;Jafarzadeh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권4호
    • /
    • pp.178-184
    • /
    • 2012
  • A porous nickel (P-Ni) substrate was prepared by selective leaching of zinc from pressed pellets containing powders of Ni & Zn in 4 M NaOH solution. Anodic deposition of manganese oxide onto the porous Ni substrate ($MnO_x$/P-Ni) formed nano-flakes of manganese oxide layers as revealed in SEM studies. Pseudocapacitance of this oxide electrode was evaluated by cyclic voltammetry (CV) and chronopotentiometry (CHP) in 2 M NaOH solution. The specific capacitance of the Mn oxide electrode was as high as 1515 F $g^{-1}$, which was ten times higher than Mn oxide deposited on a flat Ni-ribbon. 80% of capacity was retained after 200 charge/discharge cycles. The system showed no loss of activity in dry form over period of days. The impedance studies indicated highly conducting $MnO_x$/P-Ni substance and the obtained specific capacitance from impedance data showed good agreement with the charge/discharge measurements.