• 제목/요약/키워드: Electrochemical Detection

검색결과 340건 처리시간 0.019초

Monitoring corrosion of reinforced concrete beams in a chloride containing environment under different loading levels

  • Wei, Aifang;Wang, Ying;Tan, Mike Y.J.
    • Structural Monitoring and Maintenance
    • /
    • 제2권3호
    • /
    • pp.253-267
    • /
    • 2015
  • Corrosion has significant adverse effects on the durability of reinforced concrete (RC) structures, especially those exposed to a marine environment and subjected to mechanical stress, such as bridges, jetties, piers and wharfs. Previous studies have been carried out to investigate the corrosion behaviour of steel rebar in various concrete structures, however, few studies have focused on the corrosion monitoring of RC structures that are subjected to both mechanical stress and environmental effects. This paper presents an exploratory study on the development of corrosion monitoring and detection techniques for RC structures under the combined effects of external loadings and corrosive media. Four RC beams were tested in 3% NaCl solutions under different levels of point loads. Corrosion processes occurring on steel bars under different loads and under alternative wetting - drying cycle conditions were monitored. Electrochemical and microscopic methods were utilised to measure corrosion potentials of steel bars; to monitor galvanic currents flowing between different steel bars in each beam; and to observe corrosion patterns, respectively. The results indicated that steel corrosion in RC beams was affected by local stress. The point load caused the increase of galvanic currents, corrosion rates and corrosion areas. Pitting corrosion was found to be the main form of corrosion on the surface of the steel bars for most of the beams, probably due to the local concentration of chloride ions. In addition, visual observation of the samples confirmed that the localities of corrosion were related to the locations of steel bars in beams. It was also demonstrated that electrochemical devices are useful for the detection of RC beam corrosion.

표면 개질된 샤프심 전극의 전기화학적 특성 고찰 및 비효소적 글루코스 센서 활용 (Electrochemical Characteristics of Pencil Graphite Electrode Through Surface Modification and its Application of Non-enzymatic Glucose Sensor)

  • 송민정
    • Korean Chemical Engineering Research
    • /
    • 제62권2호
    • /
    • pp.147-152
    • /
    • 2024
  • 의료용 센서들은 대부분 일회용 제품으로, 검사·진단 비용을 줄이기 위해서는 저가의 전극 소재 개발이 무엇보다 중요하다. 본 연구에서는 일회용 전기화학센서의 전극 소재로 pencil graphite를 도입하여 전처리 효과와 전도성 고분자 폴리아닐린(polyaniline; PANI) 및 금속 산화물 CuO NPs를 이용한 표면 개질(modification)을 통한 전기화학적 특성을 조사하고, 이를 글루코스 검출용 비효소 전기화학센서에 적용하였다. Pencil graphite electrode (PGE)의 표면 활성화를 위한 전처리는 화학적과 전기화학적으로 각각 진행되었으며, 전처리된 샘플들은 시간대전류법(CA)과 순환전압 전류법(CV), 전기화학 임피던스(EIS) 분석법을 이용한 전기화학적 특성 조사를 통해 최종적으로 전기화학적 전처리 방법을 채택하여 CuO NPs/PANI/E-PGE를 제작하였다. 이를 적용한 비효소적 글루코스 검출용 전기화학 센서는 0.282 ~2.112 mM과 3.75423~50 mM의 선형 구간에서 각각 239.18 mA/mM×cm2과 36.99 mA/mM×cm2 정도의 감도(sensitivity)와 17.6 μM의 검출 한계(detection limit), 글루코스에 대한 좋은 선택도(selectivity)를 보였다. 본 연구의 결과를 토대로 PGEs를 활용한 다양한 일회용 센서 응용과 저가의 고성능 전극 소재 개발 가능성을 확인하고, 더 많은 분야에 활용할 수 있을 것으로 기대된다.

SPCE에 HRP 효소가 고정화된 바이오센서의 전기화학적 특성에 관한 연구 (A Study on the Electrochemical Characteristics of Biosensor with HRP Enzyme Immobilized on SPCE)

  • 한경호;이대현;윤도영;최상일
    • 전기화학회지
    • /
    • 제23권3호
    • /
    • pp.73-80
    • /
    • 2020
  • 과산화수소를 이용한 펜톤(Fenton)산화법은 수처리 및 토양 복원분야에서 활용되는 친환경 산화방법이다. 이 방법으로 오염물질을 제거할 때, 오염물의 농도에 따라 과산화수소의 농도를 적절하게 조절하는 것이 상당히 중요하다. 이에 본 연구에서는 HRP (horseradish peroxidase) 효소를 이용한 전기화학적 바이오센서를 제조하고 효소의 활성과 과산화수소의 검출 특성에 대한 연구를 수행하였다. SPCE (Screen Printed Carbon Electrode)의 작업 전극 표면에 키토산과 AuNP를 이용하여 HRP를 전착하였다. 이 후, 전위주사법(CV)과 전기화학적 임피던스 분광법(EIS)을 이용하여 효소의 고정화를 확인하였다. 또한 시간대전류법(CA)과 UV 분광법으로부터 HRP 효소의 활성을 확인하였다. 본 연구에서 제조한 바이오센서를 PBS 전해질에 담그고 과산화수소를 적정하여 CA 분석으로부터 전극에서 발생하는 전류를 측정하였다. 발생 전류는 과산화수소의 농도에 대하여 선형적으로 증가하였으며, 전류로부터 과산화수소의 농도를 예측할 수 있는 검정곡선을 도출하였다.

電氣化學的 方法에 의한 耐熱鋼의 劣化度 測定 제1보 (Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique (Part I : Mechanism and Its Possibility of Field Application))

  • 정희돈;권녕각
    • 대한기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.598-607
    • /
    • 1992
  • 본 연구에서는 고온중 장시간 사용중에 일어나는 야금학적 성질의 변화의 추 원인인 특정 탄화물을 비파괴적으로 검출하기 위해, 최근에 연구 되고 있는 전기화학 적 방법을 응용하기 위한 기초연구이다. 한편으로는 비파괴적 방법의 실험실적 연구 를 현장에 응용시키기 위한 시도를 행하고, 본 연구 결과를 이용한 향후 설비 진단 시 스템의 개요를 고찰해 보인다.

Enhancement in Selectivity of Nonenzymatic Glucose Sensors Based on Mesoporous Platinum by A.C. Impedance

  • Park, Se-Jin;Boo, Han-Kil
    • 전기화학회지
    • /
    • 제11권3호
    • /
    • pp.147-153
    • /
    • 2008
  • Improvement of the selectivity of nonenzymatic glucose based on mesoporous platinum ($H_1$-ePt) by using A.C. impedance is reported. The idea of the present work is based on the novel effect of the mesoporous electrode that the apparent exchange current due to glucose oxidation remarkably grows although the reaction kinetics on the surface is still sluggish. It is expected that the enlarged apparent exchange current on the mesoporous electrode can raise the sensitivity of admittance in A.C. impedance to glucose concentration. At a low frequency, A.C. impedance could become more powerful. The admittance at 0.01 Hz is even more sensitive to glucose than to ascorbic acid while amperometry exhibits the inverse order of sensitivity. This is the unique behavior that is neither observed by A.C. impedance on flat platinum electrode nor obtained by amperometry. The study shows how the combination of A.C. impedance and nano-structured surface can be applied to the detection of sluggish reaction such as electrochemical oxidation of glucose.

The Determination of Dopamine in the Presence of Ascorbic Acid at the Modified Glassy Carbon Electrode with Phytic Acid and Single-Walled Carbon Nanotubes

  • Bae, Si-Ra;Jeong, Hae-Sang;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2363-2368
    • /
    • 2007
  • A glassy carbon electrode (GCE) modified with phytic acid (PA) and single-walled carbon nanotubes (SWNTs) were investigated by voltammetric methods in buffer solution. The PA-SWNTs/GCE-modified electrode demonstrated substantial enhancements in electrochemical sensitivity and selectivity towards dopamine (DA) in the presence of L-ascorbic acid (AA). The PA-SWNTs films promoted the electron transfer reaction of DA, while the PA film, acting as a negatively charged linker, combined with the positively charged DA to induced DA accumulation in the film at pH under 7.4. However, the PA film restrained the electrochemical response of the negatively charged AA due to the electrostatic repulsion. The anodic peak potentials of DA and AA could be separated by electrochemical techniques, and the interferences from AA were effectively eliminated in the DA determination. Linear calibration plots were obtained in the DA concentration range of 0.1-10 μM and the detection limit of the DA oxidation current was determined to be 0.06 μM at a signal-to-noise ratio of 3. The results indicated that the modified electrode is used to determine DA without interference from AA.

Kinetic Considerations on the Olivine Cathodes

  • Yamada Atsuo;Yonemura Masao;Takei Yuki;Sonoyama Noriyuki;Kanno Ryoji
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2003년도 전지기술심포지움
    • /
    • pp.141-151
    • /
    • 2003
  • The electrochemical activity of the olivine type $LiMPO_4$ (M=transition metals) cathodes strongly depends on various factors, e.g., the transition metal element M, perturbative doping of the supervalent cations into Li site, composite formation with conductive additives, state of charge/discharge, and particle size and its geometries, etc. This is, therefore, an important issue of interdisciplinary between electrochemistry and solid state science towards practical applications. In order to shed light on this interesting but complicated issue with the transport properties and crystallographic aspects, systematic discussion will be made with the review of our recent publications; (1) first principle derivation of the electronic structures, (2) crystallographic mapping of the selected solid solutions, (3) quantitative elucidation of the electron-lattice interaction, (4) spectroscopic detection of the local environment with Mossbauer and EXAFS, (5) synthetic optimization of the electrode composite, and (6) electrochemical evaluation of the reaction kinetics, particularly on M = Fe, Mn.

  • PDF

Voltammetric Determination of Droxidopa in the Presence of Tryptophan Using a Nanostructured Base Electrochemical Sensor

  • Yaghoubian, Halimeh;Jahani, Shohreh;Beitollahi, Hadi;tajik, Somayeh;Hosseinzadeh, Rahman;Biparva, Pouria
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권2호
    • /
    • pp.109-117
    • /
    • 2018
  • A novel carbon paste electrode modified with $Cu-TiO_2$ nanocomposite, 2-(ferrocenylethynyl)fluoren-9-one (2FF) and ionic liquid (IL) (2FF/$Cu-TiO_2$/IL/CPE) was fabricated and employed to study the electrocatalytic oxidation of droxidopa, using cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV) as diagnostic techniques. It has been found that the oxidation of droxidopa at the surface of modified electrode occurs at a potential of about 295 mV less positive than that of an unmodified CPE. DPV exhibits a linear dynamic range from $5.0{\times}10^{-8}$ to $4.0{\times}10^{-4}M$ and a detection limit of 30.0 nM for droxidopa. Finally this modified electrode was used for simultaneous determination of droxidopa and tryptophan. Also the 2FF/$Cu-TiO_2$/IL/CPE shows excellent ability to determination of droxidopa and tryptophan in real samples.

Application of Polyaniline to an Enzyme-Amplified Electrochemical Immunosensor as an Electroactive Report Molecule

  • Kwon, Seong-Jung;Seo, Myung-Eun;Yang, Hae-Sik;Kim, Sang-Youl;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3103-3108
    • /
    • 2010
  • Conducting polymers (CPs) are widely used as matrixes for the entrapment of enzymes in analytical chemistry and biosensing devices. However, enzyme-catalyzed polymerization of CPs is rarely used for immunosensing due to the difficulties involved in the quantitative analysis of colloidal CPs in solution phase. In this study, an enzyme-amplified electrocatalytic immunosensor employing a CP as a redox marker has been developed. A polyanionic polymer matrix, $\alpha$-amino-$\omega$-thiol terminated poly(acrylic acid), was employed for precipitation of CP. The acrylic acid group acts as a polyanionic template. The thiol terminus of the polymer was used to produce self-assembled monolayers (SAMs) on Au electrodes and the amine terminus was employed for immobilization of biomolecules. In an enzymeamplified sandwich type immunosensor, the polyaniline (PANI) produced enzymatically is attracted by the electrostatic force of the matrix polymer. The precipitated PANI was characterized by electrochemical methods.

Electrochemistry and Determination of 1-Naphthylacetic Acid Using an Acetylene Black Film Modified Electrode

  • Huang, Wensheng;Qu, Wanyun;Zhu, Dazhai
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권7호
    • /
    • pp.1323-1325
    • /
    • 2008
  • The acetylene black (AB) was dispersed into water in the presence of dihexadecyl hydrogen phosphate (DHP) via ultrasonication, resulting in a stable and well-distributed AB/DHP suspension. After evaporation of water, an AB/DHP composite film-modified electrode was prepared. The electrochemical responses of $K_3$[Fe$(CN)_6$] at the unmodified electrode, DHP film-modified electrode and AB/DHP film-modified electrode were investigated. It is found that the AB/DHP film-modified electrode possesses larger surface area and electron transfer rate constant. Furthermore, the electrochemical behaviors of 1-naphthylacetic acid (NAA) were examined. At the AB/DHP film-modified electrode, the oxidation peak current of NAA remarkably increases. Based on this, a sensitive and convenient electrochemical method was proposed for the determination of NAA. The linear range is in the range from $4.0 {\times} 10^{-8}\;to\;5.0 {\times} 10^{-6}$ mol $L^{-1}$, and the detection limit is $1.0 {\times} 10^{-8}$ mol $L^{-1}$. Finally, this new sensing method was employed to determine NAA in several soil samples.