• Title/Summary/Keyword: Electrochemical Capacitance

Search Result 363, Processing Time 0.033 seconds

Preparation of flexible energy storage device based on reduced graphene oxide (rGO)/conductive polymer composite (환원된 그래핀 옥사이드/전도성 고분자 복합체를 이용한 플렉시블 에너지 저장 매체의 개발)

  • Jeong, Hyeon Taek;Cho, Jae Bong;Kim, Jang Hun;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.280-288
    • /
    • 2017
  • Nanocarbon base materials such as, graphene and graphene hybrid with high electrochemical performances have great deal of attention to investigate flexible, stretchable display and wearable electronics in order to develop portable and high efficient energy storage devices. Battery, fuel cell and supercapacitor are able to achieve those properties for flexible, stretchable and wearable electronics, especially the supercapacitor is a promise energy storage device due to their remarkable properties including high power and energy density, environment friendly, fast charge-discharge and high stability. In this study, we have fabricated flexible supercapacitor composed of graphene/conductive polymer composite which could improve its electrochemical performance. As a result, specific capacitance value of the flexible supercapacitor (unbent) was $198.5F\;g^{-1}$ which decreased to $128.3F\;g^{-1}$ (65% retention) after $500^{th}$ bending cycle.

The Use of Galvanostatic Pulse Transient Techniques for Assessing of Corrosion Rate of Reinforcing steel in Concrete (정전류 펄스법을 이용한 콘크리트 내 보강철근의 부식 연구)

  • So, Hyoung-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.785-793
    • /
    • 2007
  • An electrochemical transient response technique was used to study the corrosion of reinforcing steel bar in the concrete. Analysis of the transient electrochemical potential response in a corrosion interface to an applied current has enabled the separate components that make up the measured transient response to be isolated. These components display a range of resistances and capacitances, dependent on the corrosion conditions of the reinforcing steel, which may be attributed to the corrosion process, to effects within the concrete cover or to film effects on the surface of the concrete. In this technique, the corrosion rate was evaluated by summing all of the resistances in the separate components to obtain an aggregated corrosion resistance. However, it is possible that not all resistances identified are associated with the corrosion process. The results obtained show that the corrosion rates are significant dependent on the assignment of the separate components to either corrosion or to other processes. The assignment of resistive components associated with the corrosion rate can be clearly identified by taking a series of the transient measurement at different lateral distances from the corroding reinforcing steel. An inappropriate selection of measurement time however may result in an additional resistance, which is not associated with corrosion, being included or part of the resistance associated with corrosion being left out.

Porous silicon : a new material for microsensors and microactuators (다공질 실리콘: 새로운 마이크로센서 및 마이크로액추에이터 재료)

  • Min Nam Ki;Chi Woo Lee;Jeong Woo Sik;Kim Dong Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 1999
  • Since the use of porous silicon for microsensors and microactuators is in the euly stage of study, only several application devices, such as light-emitting diodes and chemical sensors have so far been demonstrated. In this paper we present an overview of the present status of porous silicon sensors and actuators research with special emphasis on the applications of chemical sensors and optical devices. The capacitive type porous silicon humidity sensors had a nonlinear capacitance-humidity characteristic and a good sensitivity at higher humidity above $40\%RH$. The porous silicon $n^+-p-n^+$ device showed a sharp increase in current when exposed to an ethanol vapor. The $p^+-PSi-n^+$ diode fabricated on porous silicon diaphragm exhibited an optical switching characteristic, opening up its utility as an optical sensor or switch. The photoluminescence (PL) spectrum, taken from porous silicon under 365 nm excitation, had a broad emission, peaked at -610 nm. The electroluminescence(EL) from ITO/PSi/In LED had a broader spectrum with a blue shifted peak at around 535nm than that of the PL.

Synthesis of Defective-Structure Li4Mn5O12 by Combustion Method and Its Application to Hybrid Capacitor (연소합성법에 의한 결함구조 Li4Mn5O12제조와 하이브리드 커패시터 적용)

  • Kim, Hun-Uk;Sun, Yang-Kook;Lee, Bum-Suk;Jin, Chang-Soo;Shin, Kyoung-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.103-109
    • /
    • 2010
  • $Li_4Mn_5O_{12}$ was synthesized by combustion method using $LiNO_3$, $Li(CH_3COO){\cdot}2H_2O$ and $Mn(CH_3COO)_2{\cdot}4H_2O$. $Li_4Mn_5O_{12}$ was obtained over $400^{\circ}C$, however, the sample calcined at $400^{\circ}C$ for any time was mixed phases of $Li_4Mn_5O_{12}$ and $Mn_2O_3$. $Li_4Mn_5O_{12}$ calcined at $400^{\circ}C$ for 5 h had larger first discharge capacity (41.5mAh/g) at 1C-rate for 3.7~4.4V than other calcined samples. Moreover, applying to hybrid capacitor, it had good discharge capacity (24.74 mAh/g or 10.46 mAh/cc) at 100 mA/g for 1~2.5 V and higher energy density (39Wh/kg or 16.49Wh/cc) at same condition.

Corrosion Behaviors of Dental Implant Alloy after Micro-sized Surface Modification in Electrolytes Containing Mn Ion

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the corrosion behaviors of dental implant alloy after microsized surface modification in electrolytes containing Mn ion. Materials and Methods: $Mn-TiO_2$ coatings were prepared on the Ti-6Al-4V alloy for dental implants using a plasma electrolytic oxidation (PEO) method carried out in electrolytes containing different concentrations of Mn, namely, 0%, 5%, and 20%. Potentiodynamic method was employed to examine the corrosion behaviors, and the alternatingcurrent (AC) impedance behaviors were examined in 0.9% NaCl solution at $36.5^{\circ}C{\pm}1.0^{\circ}C$ using a potentiostat and an electrochemical impedance spectroscope. The potentiodynamic test was performed with a scanning rate of $1.667mV\;s^{-1}$ from -1,500 to 2,000 mV. A frequency range of $10^{-1}$ to $10^5Hz$ was used for the electrochemical impedance spectroscopy (EIS) measurements. The amplitude of the AC signal was 10 mV, and 5 points per decade were used. The morphology and structure of the samples were examined using field-emission scanning electron microscopy and thin-film X-ray diffraction. The elemental analysis was performed using energy-dispersive X-ray spectroscopy. Result: The PEO-treated surface exhibited an irregular pore shape, and the pore size and number of the pores increased with an increase in the Mn concentration. For the PEO-treated surface, a higher corrosion current density ($I_{corr}$) and a lower corrosion potential ($E_{corr}$) was obtained as compared to that of the bulk surface. However, the current density in the passive regions ($I_{pass}$) was found to be more stable for the PEO-treated surface than that of the bulk surface. As the Mn concentration increased, the capacitance values of the outer porous layer and the barrier layer decreased, and the polarization resistance of the barrier layers increased. In the case of the Mn/Ca-P coatings, the corroded surface was found to be covered with corrosion products. Conclusion: It is confirmed that corrosion resistance and polarization resistance of PEO-treated alloy increased as Mn content increased, and PEO-treated surface showed lower current density in the passive region.

Preparation of Dual-functionalized Polymeric Membrane Electrolyte and Ni, Co-based Nanowire/MOF Array on Carbon Cloth for High-performance Supercapacitor (이중 기능 고분자 전해질 막의 제조 및 탄소 섬유에 니켈, 코발트 기반의 나노와이어/MOF 배열을 통한 고성능 슈퍼커패시터 연구)

  • Hye Jeong Son;Bong Seok Kim;Ji Min Kwon;Yu Bin Kang;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.211-221
    • /
    • 2023
  • This study presents a comprehensive study on the synthesis and characterization of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C flexible electrodes for energy storage applications. The dual-functional PVI-PGMA copolymer exhibited excellent ionic conductivity, with the PVI-PGMA73/LiTFSI200 membrane electrolyte achieving the highest conductivity of 1.0 × 10-3 S cm-1. The electrochemical performance of the CxNy-C electrodes was systematically investigated, with C3N2-C demonstrating superior performance, achieving the highest specific capacitance of 958 F g-1 and lowest charge transfer resistance (Rct) due to its highly interconnected hybrid structure comprising nanowires and polyhedrons, along with binary Co/Ni oxides, which provided abundant redox-active sites and facilitated ion diffusion. The presence of a graphitic carbon shell further contributed to the enhanced electrochemical stability during charge-discharge cycles. These results highlight the potential of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C electrodes for advanced energy storage devices, such as supercapacitors and lithium-ion batteries, paving the way for further advancements in sustainable and high-performance energy storage technologies.

Preparation of Coffee Grounds Activated Carbon-based Supercapacitors with Enhanced Properties by Oil Extraction and Their Electrochemical Properties (오일 추출에 의해 물성이 향상된 커피 찌꺼기 활성탄소기반 슈퍼커패시터 제조 및 그 전기화학적 특성)

  • Kyung Soo Kim;Chung Gi Min;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.426-433
    • /
    • 2023
  • Capacitor performance was considered using coffee grounds-based activated carbon produced through oil extraction and KOH activation to increase the utilization of boiwaste. Oil extraction from coffee grounds was performed by solvent extraction using n-Hexane and isopropyl alcohol solvents. The AC_CG-Hexane/IPA produced by KOH activation after oil extraction increased the specific surface area by up to 16% and the average pore size by up to 2.54 nm compared to AC_CG produced only by KOH activation without oil extraction. In addition, the pyrrolic/pyridinic N functional group of the prepared activated carbon increased with the extraction of oil from coffee grounds. In the cyclic voltage-current method measurement experiment, the specific capacitance of AC_CG-Hexane/IPA at a voltage scanning speed of 10 mV/s is 133 F/g, which is 33% improved compared to the amorphous capacity of AC_CG (100 F/g). The results show improved electrochemical properties by improving the size and specific surface area of the mesopores of activated carbon by removing components from coffee grounds oil and synergistic effects by increasing electrical conductivity with pyrrolic/pyridinic N functional groups. In this study, the recycling method and application of coffee grounds, a bio-waste, is presented, and it is considered to be one of the efficient methods that can be utilized as an electrode material for high-performance supercapacitors.

Preparation of Vinyl Waste-derived Separator and Enhancement of Electrochemical Performance using Electrospinning and Plasma Treatment (전기방사와 산소 플라즈마 처리를 활용한 폐비닐 기반의 분리막 합성 및 전기화학적 성능 향상 연구)

  • Chan-Gyo Kim;Yoon-Ho Ra;Suk Jekal;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this study, vinyl waste, which is the cause of environmental pollution, is recycled via an electrospinning method and applied as a separator that can be employed for energy storage devices. In detail, vinyl wastes are dissolved in a solution containing p-xylene and cyclohexanone, followed by electrospinning to obtain a vinyl waste-derived separator(VWS), and then the hydrophilic functional groups on the surface of VWS are introduced using a plasma treatment to improve wettability. Scanning electron microscopy analysis have verified that the shape and thickness of as-spun VWS vary depending on the concentration of vinyl waste. The surface hydrophility of VWS is modified by plasma treatment with applied powers ranging from 80 to 120W. The lowest contact angle is observed when the 100W power is applied to VWS(VWS-100W). In electrochemical analysis, the VWS-100W-based supercapacitor device shows the highest specific capacitance of 57.9 F g-1. This is ascribed to the high porosity achieved by electrospinning as well as the introduction of hydrophilic functional groups by the oxygen plasma treatment. In conclusion, vinyl waste is successfully recycled into separators for energy storage devices, suggesting a new way to reduce environmental pollution.

Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats

  • Dua, Pooja;Ren, Shuo;Lee, Sang Wook;Kim, Joon-Ki;Shin, Hye-su;Jeong, OK-Chan;Kim, Soyoun;Lee, Dong-Ki
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.807-813
    • /
    • 2016
  • Escherichia coli are important indicator organisms, used routinely for the monitoring of water and food safety. For quick, sensitive and real-time detection of E. coli we developed a 2'F modified RNA aptamer Ec3, by Cell-SELEX. The 31 nucleotide truncated Ec3 demonstrated improved binding and low nano-molar affinity to E. coli. The aptamer developed by us out-performs the commercial antibody and aptamer used for E. coli detection. Ec3(31) aptamer based E. coli detection was done using three different detection formats and the assay sensitivities were determined. Conventional Ec3(31)-biotin-streptavidin magnetic separation could detect E. coli with a limit of detection of $1.3{\times}10^6CFU/ml$. Although, optical analytic technique, biolayer interferometry, did not improve the sensitivity of detection for whole cells, a very significant improvement in the detection was seen with the E. coli cell lysate ($5{\times}10^4CFU/ml$). Finally we developed Electrochemical Impedance Spectroscopy (EIS) gap capacitance biosensor that has detection limits of $2{\times}10^4CFU/mL$ of E. coli cells, without any labeling and signal amplification techniques. We believe that our developed method can step towards more complex and real sample application.

Electrical Properties of Supercapacitor Based on Dispersion Controlled Graphene Oxide According to the Change of Solution State by Washing Process (Washing을 통한 상분리 변화에 따른 그래핀 산화물의 분산도 조절 및 슈퍼커패시터의 특성에 관한 연구)

  • Sul, Ji-Hwan;You, In-kyu;Kang, Seok Hun;Kim, Bit-Na;Kim, In Gyoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.102-106
    • /
    • 2018
  • Recently, there has been an increasing interest in the use of graphene as electrode materials for supercapacitors. In this regard, graphene oxide (GO) films were prepared using GO slurry obtained by dispersing GO powder in deionized (DI) water. The degree of dispersion of GO powder in DI water depends on the concentration of GO slurry, pH, impurity content, GO particle size, types of functional groups contained in GO, and manufacturing method of GO powder. In this study, the dispersivity of the GO powder was improved by adjusting the pH using only DI water (without additives), and a uniform GO film was obtained. The GO film was reduced by exposure to xenon intense pulsed light for a few milliseconds, and the reduced GO film was used as electrodes of a supercapacitor. The supercapacitor was characterized using cyclic voltammetry (CV), charge-discharge cycle, and electrochemical impedance spectroscopy measurements, and the specific capacitance of the supercapacitor was found to be ~140 F/g from the CV data.