• Title/Summary/Keyword: Electrochemical

Search Result 7,354, Processing Time 0.035 seconds

Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell (테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지)

  • Jeon, Sieun;An, Heeyeon;Chung, Yongjin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.588-593
    • /
    • 2022
  • Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm-2 (at 0.2 V vs. Ag/AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/PEI/TPA (36.34±1.41 μWcm-2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm-2), demonstrating again that the cathode using TPA has the best performance in HPRR.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter (이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정)

  • Hong-Ryun Jung;Jun Ho Kim;Seung Woo Kim;Jong Hoon Kim;Eun Jin Kang;Jeong Woo Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Along with the high interest in electric vehicles and new renewable energy, there is a growing demand to apply lithium-ion batteries in the construction equipment industry. The capacity of heavy construction equipment that performs various tasks at construction sites is rapidly decreasing. Therefore, it is essential to accurately predict the state of batteries such as SOC (State of Charge) and SOH (State of Health). In this paper, the errors between actual electrochemical measurement data and estimated data were compared using the Dual Extended Kalman Filter (DEKF) algorithm that can estimate SOC and SOH at the same time. The prediction of battery charge state was analyzed by measuring OCV at SOC 5% intervals under 0.2C-rate conditions after the battery cell was fully charged, and the degradation state of the battery was predicted after 50 cycles of aging tests under various C-rate (0.2, 0.3, 0.5, 1.0, 1.5C rate) conditions. It was confirmed that the SOC and SOH estimation errors using DEKF tended to increase as the C-rate increased. It was confirmed that the SOC estimation using DEKF showed less than 6% at 0.2, 0.5, and 1C-rate. In addition, it was confirmed that the SOH estimation results showed good performance within the maximum error of 1.0% and 1.3% at 0.2 and 0.3C-rate, respectively. Also, it was confirmed that the estimation error also increased from 1.5% to 2% as the C-rate increased from 0.5 to 1.5C-rate. However, this result shows that all SOH estimation results using DEKF were excellent within about 2%.

Studies on the Electrochemical Behavior of Heavy Lanthanide Ions and the Synthesis, Characterization of Heavy Metal Chelate Complexes(II). Synthesis and Characterization of Eight Coordinate Tungsten(IV) and Cerium(IV) Chelate Complex (무거운 란탄이온의 전기화학적 거동 및 중금속이온의 킬레이트형 착물의 합성 및 특성에 관한 연구(제2보). 8배위 텅스텐(IV)과 세륨(IV)의 킬레이트형 착물의 합성 및 특성)

  • Kang, Sam Woo;Chang, Choo Wan;Suh, Moo Yul;Lee, Doo Youn;Choi, Won Jong
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.41-49
    • /
    • 1992
  • An attempt was made to prepare two series of tetrakis eight-coordinate tungsten(IV) and cerium(IV) complexes containing the 5,7-dichloro-8-quinolinol(N:${\pi}$-acceptor atom, O:${\pi}$-donor atom) ligand. Tetrakis eight-coordinate tungsten(IV) complex of 2-mercaptopyrimidine(N:${\pi}$-acceptor atom, S:${\pi}$-donor atom) ligand have also been prepared. And the new series of mixed-ligand eight-coordinate tungsten(IV) complexes containing bidentate ligands 5,7-dichloro-8-quinolinol and 2-mercaptopyrimidine have been prepared, isolated by TLC and characterized. $W(dcq)_4$, $W(dcq)_3(mpd)_1$, $W(dcq)_2(mpd)_2$, $W(dcq)_1W(dcq)_3$ and $W(mpd)_4$ complexes of MLCT absorption band appeared to 710nm, 680nm, 625nm, 581nm, and 571nm(${\varepsilon}\;max={\sim}>{\times}10^4$) on low-energy respectively. The specific absorption wave length of $Ce(dcq)_4$ is appeared 520nm(${\varepsilon}\;max={\sim}>{\times}10^4$). The Chemical shift values by proton of coordinated position appeared to $W(dcq)_4$ [$H_2:8.9ppm$]; $W(dcq)_3(mpd)_1$ [$H_2:9.3$,$H_6:9.2ppm$]; $W(dcq)_2(mpd)_2$ [$H_2:9.7$,$H_6:8.95ppm$]; $W(dcq)_1(mpd)_3$ [$H_2:9.8$,$H_6:9.4ppm$]; $W(mpd)_4$ [$H_6:8.8ppm$]; $Ce(dcq)_4$ [$H_2:9.3ppm$] with $^1H$-NMR. The inertness of mixed-ligand eight coordinate tungsten(IV) complexes have been investigated by UV-Vis. spectroscopic method in dimethylsulfoxide at $90^{\circ}C$. The inertness of $W(dcq)_n(mpd)_{4-n}$ complexes showed the following order, $W(dcq)_3(mpd)_1;k_{obs.}=3.8{\times}10^{-6}$ > $W(mpd)_4;k_{obs.}=6.0{\times}10^{-6}$ > $W(dcq)_4;k_{obs.}=6.4{\times}10^{-6}$ > $W(dcq)_2(mpd)_2;k_{obs.}=7.0{\times}10^{-6}$ > $W(dcq)_1(mpd)_3;k_{obs.}=1.7{\times}10^{-5}$, which showed the inertness until 16days, 10days, 9days, 8days, and 4days. The $W(mpd)_4$ is very inert as $k_{obs.}=3.6{\times}10^{-6}$(16days) in xylene at $90^{\circ}C$ and $k_{obs.}=6.0{\times}10^{-6}$(10days) in DMSO at $90^{\circ}C$.

  • PDF