• Title/Summary/Keyword: Electrocardiographic signals

Search Result 4, Processing Time 0.018 seconds

Electrode Characteristics of Non-contact Electrocardiographic Measurement

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho;Choi, Won Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.42-45
    • /
    • 2015
  • The ability to take electrocardiographic measurements while performing our daily activities has become the people-choice for modern age vital sign sensing. Currently, wet and dry ECG electrodes are known to pose threats like inflammations, allergic reactions, and metal poisoning due to their direct skin interaction. Therefore, the main goal in this work is to implement a very small ECG sensor system with a capacitive coupling, which is able to detect electrical signals of heart at a distance without the conductive gel. The aim of this paper is to design, implement, and characterize the contactless ECG electrodes. Under a careful consideration of factors that affect a capacitive electrode functional integrity, several different sizes of ECG electrodes were designed and tested with a pilot ECG device. A very small cotton-insulated copper tape electrode ($2.324cm^2$) was finally attained that could detect and measure bioelectric signal at about 500 um of distance from the subject's chest.

Real-Time Monitoring of ECG Signal under Ubiquitous Environment (유비쿼터스 환경 하의 실시간 심전도 신호 모니터링)

  • Kim, Jungjoon;Kim, Jin-Sub;Ryu, Chunha;Kim, Jeong-Hong;Park, Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.728-735
    • /
    • 2013
  • In this paper, we present a method of transmitting ECG signals in real-time mobile environment to be possible to implement the ubiquitous healthcare system. Because of the excessive amount of data transmission of ECG signals, it is necessary to propose a limitation to the real-time transmission. We propose a real-time electrocardiographic monitoring system based on the proposal of unusual waveform detection algorithm which detects the R-wave distortions from the arrhythmia ECG signals having unusual waveform of about 10% on average. It is very effective in terms of time and cost for medical staffs to monitor and analyze ECG signals for a long period of time. Monitoring unusual waveform by gradually adjusting the threshold values of potential and kurtosis makes the amount of data transmitted decrease and significance level of waveform to be enhanced. The unusual waveform detection algorithm is implemented with ubiquitous environment inter-working device client. It is applicable to ubiquitous healthcare system capable of real-time monitoring the ECG signal. While ensuring the mobility, it allows for real-time continuous monitoring of ECG signals.

Design of Neural Network Based IEF Filter for Time-varying Control of Incremental Factor (증가인자 시변제어를 위한 신경망 증가평가필터 설계)

  • 박상희;최한고
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.333-340
    • /
    • 2002
  • Powerline interference in bioelectric recordings is a common source of noise. IEF(Incremental Estimation Filter) has been used to eliminate powerline interferences in biosignals, especially in ECG(Electrocadiogram) signals. The constant incremental factor in the IEF filter, which affects the performance of noise rejection, is usually determined empirically or experimentally based on the input signals. This paper presents the design of neural network based IEF filter for time-varying control of the incremental factor. The proposed IEF filter is evaluated by applying to artificial signals as well as ECG signals of MIT-BIH database. For the relative comparison of noise-rejection performance, it is compared with adaptive noise canceler and conventional IEF filter. Simulation results show that the neural network based IEF filter outperforms these adaptive filters with respect to convergence speed and noise rejection is specific frequencies.

Preceding Research for Estimating the Maximal Fat Oxidation Point through Heart Rate and Heart Rate Variability (심박 및 심박변화를 통한 최대 지방 연소 시점의 추정)

  • Sim, Myeong-Heon;Kim, Min-Yong;Yoon, Chan-Sol;Chung, Joo-Hong;Noh, Yeon-Sik;Park, Sung-Bin;Yoon, Hyung-Ro
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1340-1349
    • /
    • 2012
  • Increasing the oxidation of fat through exercise is the recommendable method for weight control. Preceding researches have proposed increase in the usage of fat during exercise in stabilized state and under maximum exertion through aerobic training. However, such researches require additional equipment for gas analysis in order to measure the caloric value or gas exchange of subjects during exercise. Such equipments become highly restrictive for those exercise and cause substantially higher cost. According to this, we have presented the method of estimating the maximal fat oxidation point through changes in LF & HF which reflects changes in heart rate and the autonomic nervous system in order to induce exercise for a less restrictive and efficient fat oxidation than existing methods. We have conducted exercise stress test on subject with similar exercise abilities, and have detected the changes in heart rate and changes in LF & HF by measuring changes in fat oxidation and measuring ECG signals at the same time through a gas analyzer. Changes in heart rate and HRV of the subjects during exercising was detected through only the electrocardiographic signals from exercising and detected the point of maximum fat oxidation that differs from person to person. The experiment was carried out 16 healthy males, and used Modified Bruce Protocol, which is one of the methods of exercise stress test methods that use treadmill. The fat oxidation amount during exercise of all the subjects showed fat oxidation of more than 4Fkcal/min in the exercise intensity from about 5 minutes to 10 minutes. The correlation between the maximal fat oxidation point obtained through gas analysis and the point when 60% starts to be relevant in the range from -0.01 to 0.01 seconds for values of R-R interval from changes in heart rate had correlation coefficients of 0.855 in Kendall's method and in Spearman's rho, it showed significant results of it being p<0.01 with 0.950, respectively. Furthermore, in the changes in LF & HF, we have determined the point where the normalized area value starts to become the same as the maximal fat oxidation point, and the correlation here showed 0.620 in Kendall and 0.780 in Spearma of which both showed significant results as p<0.01.