• Title/Summary/Keyword: Electro-thermal Analysis

Search Result 118, Processing Time 0.025 seconds

Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.197-228
    • /
    • 2016
  • In the present study, thermo-electro-mechanical vibration characteristics of functionally graded piezoelectric (FGP) Timoshenko nanobeams subjected to in-plane thermal loads and applied electric voltage are carried out by presenting a Navier type solution for the first time. Three kinds of thermal loading, namely, uniform, linear and non-linear temperature rises through the thickness direction are considered. Thermo-electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FGP nanobeams as compared to some cases in the literature. In following a parametric study is accompanied to examine the effects of several parameters such as various temperature distributions, external electric voltage, power-law index, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams.

Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment

  • Vinyas, M.;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.351-367
    • /
    • 2017
  • In this article, the multiphysics response of magneto-electro-elastic (MEE) cantilever beam subjected to thermo-mechanical loading is analysed. The equilibrium equations of the system are obtained with the aid of the principle of total potential energy. The constitutive equations of a MEE material accounting the thermal fields are used for analysis. The corresponding finite element (FE) formulation is derived and model of the beam is generated using an eight noded 3D brick element. The 3D FE formulation developed enables the representation of governing equations in all three axes, achieving accurate results. Also, geometric, constitutive and loading assumptions required to dimensionality reduction can be avoided. Numerical evaluation is performed on the basis of the derived formulation and the influence of various mechanical loading profiles and volume fractions on the direct quantities and stresses is evaluated. In addition, an attempt has been made to compare the individual effect of thermal and mechanical loading with the combined effect. It is believed that the numerical results obtained helps in accurate design and development of sensors and actuators.

Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects

  • Faleh, Nadhim M.;Abboud, Izz Kadhum;Nori, Amer Fadhel
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.707-717
    • /
    • 2020
  • In this paper, analysis of thermal post-buckling behaviors of sandwich nanobeams with two layers of multi-phase magneto-electro-thermo-elastic (METE) composites have been presented considering geometric imperfection effects. Multi-phase METE material is composed form piezoelectric and piezo-magnetic constituents for which the material properties can be controlled based on the percentages of the constituents. Nonlinear governing equations of sandwich nanobeam are derived based on nonlocal elasticity theory together with classic thin beam model and an analytical solution is provided. It will be shown that post-buckling behaviors of sandwich nanobeam in thermo-electro-magnetic field depend on the constituent's percentages. Buckling temperature of sandwich nanobeam is also affected by nonlocal scale factor, magnetic field intensity and electrical voltage.

On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.659-674
    • /
    • 2020
  • The present paper employs nonlocal strain gradient theory (NSGT) to study buckling behavior of functionally graded magneto-electro-thermo-elastic (FG-METE) nanoshells under various physical fields. NSGT modeling of the nanoshell contains two size parameters, one related to nonlocal stress field and another related to strain gradients. It is considered that mechanical, thermal, electrical and magnetic loads are exerted to the nanoshell. Temperature field has uniform and linear variation in nanoshell thickness. According to a power-law function, piezo-magnetic, thermal and mechanical properties of the nanoshell are considered to be graded in thickness direction. Five coupled governing equations have been obtained by using Hamilton's principle and then solved implementing Galerkin's method. Influences of temperature field, electric voltage, magnetic potential, nonlocality, strain gradient parameter and FG material exponent on buckling loads of the FG-METE nanoshell have been studied in detail.

Research to Predict the Thermal Characteristics of Electro Hydrostatic Actuator for Aircraft (항공기용 전기-정유압식 작동기(Dual Redundant Asymmetric Tandem EHA)의 열특성 예측을 위한 연구)

  • Kim, Sang Seok;Park, Hyung Jun;Kim, Daeyeon;Kim, Dae Hyun;Kim, Sang Beom;Lee, Junwon;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.84-92
    • /
    • 2022
  • The electro-hydrostatic actuator (EHA) recently has been used in flight control fields for aircraft because of its benefits of minimizing oil leakage and weight, improving safety, and etc. while independently operating the hydraulic power source and eliminating complex hydraulic piping. The aircraft of which EHA is installed inside, has the thermal management issue of EHA, because of its limited cooling source as compared with the aircraft which installs the traditional central hydraulic system. So, the thermal analysis model which predicts the thermal characteristics of EHA, is required to resolve this thermal management issue. In this study, an oil circulation circuit inside the hydraulic power module comprised of hydraulic pump and electrical motor for EHA was applied. This is for the purpose of developing the internal rotary group of hydraulic power module, which operates under the conditions of high rotation speed and hydraulic pressure. After formulating an appropriate thermal analysis model, the thermal analysis results with oil cooled or no oil cooled hydraulic control module were compared and reviewed, for the purpose of predicting the thermal characteristics of EHA.

Thermal properties and mechanical properties of dielectric materials for thermal imprint lithography

  • Kwak, Jeon-Bok;Cho, Jae-Choon;Ra, Seung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.242-242
    • /
    • 2006
  • Increasingly complex tasks are performed by computers or cellular phone, requiring more and more memory capacity as well as faster and faster processing speeds. This leads to a constant need to develop more highly integrated circuit systems. Therefore, there have been numerous studies by many engineers investigating circuit patterning. In particular, PCB including module/package substrates such as FCB (Flip Chip Board) has been developed toward being low profile, low power and multi-functionalized due to the demands on miniaturization, increasing functional density of the boards and higher performances of the electric devices. Imprint lithography have received significant attention due to an alternative technology for photolithography on such devices. The imprint technique. is one of promising candidates, especially due to the fact that the expected resolution limits are far beyond the requirements of the PCB industry in the near future. For applying imprint lithography to FCB, it is very important to control thermal properties and mechanical properties of dielectric materials. These properties are very dependent on epoxy resin, curing agent, accelerator, filler and curing degree(%) of dielectric materials. In this work, the epoxy composites filled with silica fillers and cured with various accelerators having various curing degree(%) were prepared. The characterization of the thermal and mechanical properties wasperformed by thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rheometer, an universal test machine (UTM).

  • PDF

Comparative Analysis of the Heart Rate Variability, Body Composition, Digital Infrared Thermal Imaging and Electro Pulse Graph Between Primary Dysmenorrhea Patients and Secondary Dysmenorrhea Patients (원발성 월경통 환자와 속발성 월경통 환자의 심박변이도, 체성분, 적외선 체열 촬영, 맥전도 검사 상 특징 비교 고찰)

  • Lee, Su-Jeong;Ji, Hae-Ri;Hwang, Deok-Sang;Lee, Chang-Hoon;Jang, Jun-Bock;Lee, Jin-Moo
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.32 no.4
    • /
    • pp.25-38
    • /
    • 2019
  • Objectives: The purpose of this study is to analysis differences of heart rate variability (HRV), body composition, digital infrared thermal imaging (DITI), and electro pulse graph by whether there are some causes of dysmenorrhea or not. Methods: We studied 89 patients who took at least one test among HRV, Body composition, DITI, and electro pulse graph visiting Kyung Hee University Hospital at Gangdong from March 1, 2014 to May 7, 2019. Results: There were statistically significant differences in Low frequency (LF), LF norm and High frequency norm (HF norm) of HRV between primary dysmenorrhea patients and secondary dysmenorrhea patients. There were statistically significant differences in Body Mass Index (BMI) and body fat percentage of Body composition between two groups. But both BMI were included in normal range. There were no statistically significant difference in DITI results. And there was significant difference of Estimated circulation resistance (ECR) between two groups. Conclusions: The results suggest that hormone imbalance of secondary dysmenorrhea patients can affect HRV results. And because of high ECR, phlegm pathology can be more considered in secondary dysmenorrhea patients. Further study should be conducted to confirm the results of body composition and DITI differences.

Analysis of induction heating using analysis of electro-magnetic field (전자기장 해석을 이용한 유도가열 해석)

  • Yun Jin-O;Yang Yeong-Su;Jo Si-Hun;Hyeon Chung-Min
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.187-189
    • /
    • 2006
  • Transient finite element method for analysis of moving coil needs many number of elements and much time to make calculation. Therefore, induction heating process for moving coil was simulated by traveling the position of the heating planes in this paper. In the magnetic and thermal analyses, temperature-dependent magnetic and thermal material properties were considered. Finite element program was developed and finite element results were compared with the experimental results.

  • PDF

Backstepping Control for Multi-Machine Web Winding System

  • Bouchiba, Bousmaha;Hazzab, Abdeldjebar;Glaoui, Hachemi;Med-Karim, Fellah;Bousserhane, Ismail Khalil;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • This work treat the modeling and simulation of non-linear dynamic behavior of a web winding process during traction. We designate by a winding process any system applying the cycles of unwinding, transport, treatment, and winding to various flat products. This system knows several constraints, such as the thermal effects caused by the frictions, and the mechanical effects provoked by metal elongation, that generates dysfunctions due to the influence of the process conditions. Several controllers are considered, including Proportional-integral (PI) and Backstepping control. This paper presents the study of Backstepping controls strategy of the winding system. Our winding system is simulated in MATLAB SIMULINK environment, the results obtained illustrate the efficiency of the proposed control with no overshoot, and the rising time is improved with good disturbances rejections comparing with the classical control law.

Thermal Analysis and Design of AlGaInP-based Light Emitting Diode Arrays

  • Ban, Zhang;Liang, Zhongzhu;Liang, Jingqiu;Wang, Weibiao;JinguangLv, JinguangLv;Qin, Yuxin
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.143-149
    • /
    • 2017
  • LED arrays with pixel numbers of $3{\times}3$, $4{\times}4$, and $5{\times}5$ have been studied in this paper in order to enhance the optical output power and decrease heat dissipation of an AlGaInP-based light emitting diode display device (pixel size of $280{\times}280{\mu}m$) fabricated by micro-opto-electro-mechanical systems. Simulation results showed that the thermal resistances of the $3{\times}3$, $4{\times}4$, $5{\times}5$ arrays were $52^{\circ}C/W$, $69.7^{\circ}C/W$, and $84.3^{\circ}C/W$. The junction temperature was calculated by the peak wavelength shift method, which showed that the maximum value appears at the center pixel due to thermal crosstalk from neighboring pixels. The central temperature would be minimized with $40{\mu}m$ pixel pitch and $150{\mu}m$ substrate thickness as calculated by thermal modeling using finite element analysis. The modeling can be used to optimize parameters of highly integrated AlGaInP-based LED arrays fabricated by micro-opto-electro-mechanical systems technology.