• Title/Summary/Keyword: Electro-rheological Fluid

Search Result 118, Processing Time 0.021 seconds

Machining Characteristics of Wire EDM Using ER Brake System (ER 제동장치를 적용한 와이어 컷 방전의 가공 특성)

  • 김기선
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.171-178
    • /
    • 2004
  • This paper presents vibration characteristics of a wire cut discharge machine in which an electro-rheological brake actuator is used to control the wire tension. The ER brake actuator has several advantages including design simplicity, fast response time and real-time controllability. On the basis of the tension level required in the machine an appropriate size of the ER brake actuator is devised. The ER brake actuator is then incorporated with the machine and the field-dependent wire tension is experimentally evaluated. The straightness of the workpiece is also empirically investigated by changing the intensity of the electric field.

Position Tracking Control of a Moving Table Using ER Brake/Clutch (ER 브레이크 및 클러치를 이용한 이송 테이블의 위치추적제어)

  • Choi, S.B.;Lee, H.G.;Kim, S.L.;Cheong, C.C.;Han, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.208-217
    • /
    • 1998
  • 본 연구에서는 ER 브레이크와 ER클러치를 피드백작동기로 사용하여 이송테이블의 위치 추적제어를 수행하였다. 이를 위해 먼저 아라빅 검(arabic gum)계통의 ER유체를 자체조성한 후 전기장에 대한 빙햄(Bingham)모델을 실험적으로 도출하였다. 빙햄모델에 근거하여 평판형의 ER브레이크와 실린더형의 ER클러치를 설계 제작하였으며, 계단입력(step input)전기장에 따른 출력토오크특성을 통하여 이들 작동기의 동적모델을 얻었다. 이들 작동기와 연계된 이송테이블시스템의 운동지배방정식을 유도한 후 위치추적제어를 위한 슬라이딩모드제어기를 설계하였다. 제어기 설계시 이송해이블의 부하질량 변화에 대한 시스템 불확실성과 마찰력을 고려하여 제어성능의 강건성을 보장하도록 하였다. 제안된 제어시스템의 제어영역(control bandwidth)을 주파수 영역에서 고찰한 후 여러 레적에 대한 위치추적제어 실험을 수행하였다.

  • PDF

Control and Response Characteristics of a Continuously Variable ER Damper (연속가변 ER 댐퍼의 제어 및 응답특성)

  • 최승복;최영태;박우철;정재천;서문석;여문수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.164-174
    • /
    • 1996
  • This paper presents control and response characteristics of a continuously variable ER(electrorheological) damper for small-sized vehicles. The ER damper is devised and its governing equation of motion is derived from the bond graph model. The field-dependent yield shear stresses are distilled from experimental investigation on the Bingham property of the ER fluid. The distilled data are incorporated into the governing system model and, on the basis of this model, an appropriate size of the ER damper is manufactured. After evaluating the field-dependent damping performance of the proposed ER damper, the skyhook control algorithm is formulated to achieve desired level of the damping force. The controller is then experimentally implemented and control characteristics of the ER damper are presented in order to demonstrate superior controllability of the damping force. In addition, response characteristics of the damping force with respect to the electric field with fast on-off frequency are provided to show the feasibility of practical application.

  • PDF

Vibration Control of Hvbrid Smart Structure Using PZT Patches and ER Fluids (PZT와 ER유체를 적용한 복합지능구조물의 진동제어)

  • Yun, Shin-Il;Park, Keun-Hyo;Han, Sang-Bo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.734-739
    • /
    • 2003
  • Many types of smart materials and control laws are available to actively adjust the structure from various external disturbances. Usually, a certain type of control laws to activate a specific smart material is well established, but the effectiveness of the control scheme is limited by the choice of the smart materials and the responses of the structure. ER fluid is adequate to provide relatively large control force, on the other hand, the PZT patches are suitable to provide small but arbitrary control forces at any point along the structure. It was found that active vibration control mechanism using ER fluid failed to suppress the excitation off the resonant frequency with changed structural characteristics along the frequency response function of the closed loop of the control system. To compensate this additional peak of the closed loop system, PPF control using PZT as an actuator is added to construct a hybrid controller.

  • PDF

Vibration Control of CD-ROM Feeding System Using ER Fluids (ER 유체를 이용한 CD-ROM 피딩 시스템의 진동 제어)

  • 김형규;임수철;최승복;박영필
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 1999
  • This paper presents vibration control of a drive feeding system consisting of a new type of CD-ROM(compact discread only memory) mount using electro-rheologocal(ER) fluid. Chemically treated starch particles and silicon oil are used for ER fluid. and its field-dependent yield stresses are experimentally distilled under both the shear and the flow modes. On the basis of the yield stress, an appropriate size of ER CD-ROM mount adapted to conventional feeding system is designed and manufactured. Vibration isolation performance of the proposed mount is evaluated in the frequency domain and compared with that of conventional rubber mount. The ER CD-ROM mount is then installed to the drive feeding system and the system equation of motion is derived. Following the formulating the sky-hook controller, computer simulation is undertaken in order to evaluate vibration suppression of the feeding system subjected to various disturbances(excitations).

  • PDF

Control of Automatic Cargo Handling System Using ER Valves (I) -Modeling of ER Valves- (ER밸브를 이용한 자동 하역 시스템의 제어 (I) -ER밸브의 모델링-)

  • Sung, Kum-Kil;Chung, Dar-Do;Choi, Seung-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.45-52
    • /
    • 2001
  • This paper presents two different models of electrorheological(ER) valves which can be applicable to an automatic cargo handling system at the seaport. Four different ER fluids, which are commercially available, are adopted and their Bingham characteristics are experimentally evaluated with respect to the intensity of electric field. The field-dependent Bingham models are used in the design of two types of ER valves; single-type and divided-type. The governing equations of motion of the ER valves are derived and the principal design parameters are determined based on 200ton platform to be vertically controlled by the ER valves. Both pressure drops due to the applied field and current density required to operate the ER valves are analyzed. In addition, the pressure drops of the cylinder system are evaluated for both ER valves.

  • PDF

Performance Evaluation of a Mixed-Mode Type ER Engine Mount(II)-Performance Evaluation Via HILS- (복합 모드형 ER엔진마운트의 성능평가 (II) - HILL를 통한 성능 평가 -)

  • Choe, Yeong-Tae;Choe, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2151-2158
    • /
    • 2000
  • This paper presents vibration control performance of a passenger vehicle installed with the mixed-mode type ER engine mounts. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, a dynamic model of a vehicle featuring the ER engine mounts is formulated by taking into account the engine excitation forces. A new type of the fuzzy skyhook controller is then established in order to control both engine and body vibrations. This is accomplished by adopting a weighting parameter between two performance criteria which is to be determined from the fuzzy algorithm. Vertical displacement and acceleration of the engine mount obtained from the HILS method are provided in the frequency domain. In addition, vibration control performance between the conventional hydraulic engine mount and the proposed engine mount is compared in the time and frequency domains.

Inverse Model Control of An ER Damper System

  • Cho Jeong-Mok;Jung Taeg-Eun;Kim Dong-Hyeon;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.64-69
    • /
    • 2006
  • Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for analysis and simulation. Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER damper for required damping force.