• 제목/요약/키워드: Electro-osmotic Flow

검색결과 28건 처리시간 0.022초

단위전류당 고유량 유기용매 이송을 위한 다공성 실리콘막 전기침투 펌프의 개발 (Development of Porous Silicon Electro-osmotic Pumps for High Flow Rate Per Current Flow Delivery of Organic Solvents)

  • 권길성;김대중
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.105-111
    • /
    • 2010
  • 양극산화법과 DRIE 법으로 제작된 다공성 실리콘막을 이용하여 두 종류의 전기침투 펌프를 제작하였다. 펌프의 성능은 유기용매를 이용하여 유량과 단위전류당 유량으로 측정하였다. 두 종류 펌프 모두 기존의 다공성 유리막으로 제작된 전기침투 펌프보다 성능이 우월했다. 특히 DRIE 법으로 제작된 다공성 실리콘막은 유량과 단위전류당 유량이 모두 월등한 성능을 보였다. DRIE 법은 널리 알려진 방법이기에 이와 같이 제작된 펌프는 다양한 응용 분야에 비교적 쉽게 적용될 것으로 기대된다.

마이크로 PIV 기법을 이용한 미세채널 내부 electro-osmotic 유동 해석 (Analysis of Electro-osmotic Flow in a Micro Channel Using a Micro PIV)

  • 김양민;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.51-52
    • /
    • 2002
  • Electro-osmotic flow in a PDMS microchannel of $66{\mu}m\;\times\;200{\mu}m\;\times\;3cm$ has been investigated using a micro PIV system. The field of view was $1056{\mu}m\;\times\;200{\mu}m$ and instantaneous velocity fields were obtained using two-frame cross-correlation method with $64\;\times\;64\;pixels^2$ interrogation window. In this study, we focused on the effect of applied electric field on the variation of internal flow with varying the electric field and seeding particles. The electro-osmotic flow shows a flat velocity profile and the mean velocity is proportional to the applied electric field.

  • PDF

전기장의 국소변화에 따른 전기삼투 유동 및 혼합 특성해석 (A STUDY ON CHARACTERISTICS OF EECTRO-OSMOTIC FLOWS UNDER THE LOCAL VARIATION OF THE ELECTRIC FIELD)

  • 허형석;정종현;서용권
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.27-30
    • /
    • 2005
  • In a microfluidic chips pressure driven flow or electro-osmotic flow has been usually employed to deliver bio-samples. Flow in the chips is usually slow and the mixing performance is poor. A micro-mixer with a rapid mixing is important for practical applications. In this study a newly designed and electro-osmotic driven micro-mixer is proposed. This design is comprised of a channel and a series of metal electrodes periodically attached on the side surface. In this configuration electro-osmotic flows and the stirring effects are simulated three-dimensionally using a commercial code, CFD-ACE. Focus is given the effect on the electro-osmotic flow characteristics under the local variation of the electric field.

  • PDF

마이크로 채널 내부 전기삼투 유동에 대한 PIV유동 해석 (Micro-PIV Analysis of Electro-osmotic Flow inside Microchannels)

  • 김양민;이상준
    • 한국가시화정보학회지
    • /
    • 제1권2호
    • /
    • pp.47-51
    • /
    • 2003
  • Microfluidic chips such as lab-on-a-chip (LOC) include micro-channels for sample delivery, mixing, reaction, and separation. Pressure driven flow or electro-osmotic flow (EOF) has been usually employed to deliver bio-samples. Having some advantages of easy control, the flow characteristics of EOF in microchannels should be fully understood to effectively control the electro-osmotic pump for bio-sam-pie delivery. In this study, a micro PIV system with an epifluorescence inverted microscope and a cooled CCD was used to measure velocity fields of EOF in a glass microchannel and a PDMS microchannel. The EOF velocity fields were changed with respect to electric charge of seeding particles and microchannel materials used. The EOF has nearly uniform velocity distribution inside the microchannel when pressure gradient effect is negligible. The mean streamwise velocity is nearly proportional to the applied electric field. Glass microchannels give better repeatability in PIV results, compared with PDMS microchannels which are easy to fabricate and more suitable for PIV experiments.

  • PDF

포트란-CFX 연동해석 기법을 이용한 비정상 DC 전기삼투 유동 가시화 (Visualization of Unsteady DC Electro-osmotic flow by using Methods of Coupling Fortran and CFX Codes)

  • 허영근;정종현;서용권
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.22-27
    • /
    • 2011
  • In this study, we present methods of coupling a commercial code, ANSYS CFX, and the user Fortran codes for solving an unsteady electro-osmotic flow around a pair of electrodes, receiving DC, attached to the top and the bottom walls of a two-dimensional cavity. We developed a module of Fortran programs for solving the ion-transport equations as well as the Poisson equations for the potential to be used in coupling with the CFX. We present how the developed codes are applied to solving the transient DC electro-osmotic flow problem within a simple cavity. We also address various problems encountered during the development process and explain why such problems are raised.

마이크로 채널 내부 전기삼투 유동의 Zeta-potential 계측 (Measurement of Zeta-potential of Electro-osmotic Flow Inside a Micro-channel)

  • 한수동;이상준
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.935-941
    • /
    • 2006
  • Many important properties in colloidal systems are usually determined by surface charge $({\zeta}-potential)$ of the contacted solid surface. In this study, ${\zeta}-potential$ of glass ${\mu}-channel$ was evaluated from the electro-osmotic velocity distribution. The electro-osmotic velocity inside a glass f-channel was measured using a micro-PIV velocity field measurement technique. This evaluation method is more simple and easy to approach, compared with the traditional streaming potential technique. The ${\zeta}-potential$ in the glass ${\mu}-channel$ was measured fur two different mole NaCl solutions. The effect of an anion surfactant, sodium dodecyl sulphate (SDS), on the electro-osmotic velocity and f-potential in the glass surface was also studied. In the range of $0{\sim}6mM$, the surfactant SDS was added to NaCl solution in few different mole concentrations. As a result, the addition of SDS increases ${\zeta}-potential$ in the surface of the glass ${\mu}-channel$. The measured $\zeta-potential$ was found to vary from -260 to -70mV. When negatively charged particles were used, the flow direction was opposite compared with that of neutral particles. The ${\zeta}-potential$ has a positive sign for the negative particles.

T자형 마이크로 채널 내부 전기삼투 유동의 불안정성 가시화 (Visualization of Electro-osmotic Flow Instability in a T-shape Microchannel)

  • 한수동;이상준
    • 한국가시화정보학회지
    • /
    • 제3권2호
    • /
    • pp.45-50
    • /
    • 2005
  • Electro-osmotic flow (EOF) instability in a microchannel has been experimentally investigated using a micro-PIV system. The micro-PIV system consisting of a two-head Nd:Yag laser and cooled CCD camera was used to measure instantaneous velocity fields and vorticity contours of the EOF instability in a T-shape glass microchannel. The electrokinetic flow instability occurs in the presence of electric conductivity gradients. Charge accumulation at the interface of conductivity gradients leads to electric body forces, driving the coupled flow and electric field into an unstable dynamics. The threshold electric field above which the flow becomes unstable and rapid mixing occurs is about 1000V/cm. As the electric field increases, the flow pattern becomes unstable and vortical motion is enhanced. This kind of instability is a key factor limiting the robust performance of complex electrokinetic bio-analytical devices, but can also be used for rapid mixing and effective flow control fer micro-scale bio-chips.

  • PDF

전기삼투 유동 중 마이크로 채널 내 곡률 변화에 따른 혼합특성에 대한 연구 (A Study on the curvature Effect of microchannel within Electroosmotic Flow)

  • 허형석;서용권
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.107-110
    • /
    • 2005
  • In this study a newly designed and electro-osmotic micro-mixer is proposed. This design is comprised of a channel and metal electrodes attached in the local side wall surface, To investigate the flow patterns a numerical method is employed. To obtain the flow patterns numerical computation are performed by using a commercial code, CFD-ACE. The fluid-flow solutions are then cast into studying the characteristics of stirring with aid the Mixing index. Focus is given the effect on the electro osmotic flow characteristics under the curvature variation in the microchannel with the local of the electric field

  • PDF

마이크로 채널 내부 전기삼투 유속 측정을 통한 유리표면의 Zeta-potential 측정 (Zeta-potential Measurement on Glass Surface by Measuring Electro-osmotic Velocity inside a Micro-channel)

  • 한수동;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.80-84
    • /
    • 2005
  • Many important properties in colloidal systems are usually determined by surface charge ($\zeta$-potential) of the contacted solid surface. In this study, $\zeta$-potential of glass $\mu$-channel was evaluated from the electro-osmotic velocity distribution. The electro-osmotic velocity inside a glass $\mu$-channel was measured using a micro-PIV velocity field measurement technique. This evaluation method is more simple and easy to approach, compared with the traditional streaming potential technique. The $\zeta$-potential in the glass $\mu$-channel was measured for two different mole NaCl solutions. The effect of an anion surfactant, sodium dodecyl sulphate (SDS), on the electro-osmotic velocity and $\zeta$-potential in the glass surface was also studied. In the range of $0\∼6$mM, the surfactant SDS was added to NaCl solution in four different mole concentrations. As a result, the addition of SDS increases $\zeta$-potential in the surface of the glass $\mu$-channel. The measured $\zeta$-potential was found to vary from-260 to-70mV. When negatively charged particles were used, the flow direction was opposite compared with that of neutral particles. The $\zeta$-potential has a positive sign for the negative particles.

  • PDF

마이크로 채널 내 국소적 전위 인가에 따른 전기삼투 유동 및 혼합 특성에 대한 수치해석적 연구 (A Numerical Study on Electro-osmotic Flow and Stirring Characteristics in a Microchannel with Local Adjustment of Electric Potential)

  • 서용권;허형석
    • 한국가시화정보학회지
    • /
    • 제4권1호
    • /
    • pp.31-40
    • /
    • 2006
  • In this study a newly designed electro-osmotic micro-mixer is proposed. This study is composed of a channel and metal electrodes attached locally on the side wall surface ultimately to control the mixing effect. To obtain the flow patterns, numerical computation was performed by using a commercial code, CFD-ACE. The fluid-flow solutions are the cast into studying the characteristics of stirring in terms of the mixing index. It was shown that the local control of the electric potential can indeed contribute to the enhancement of mixing effect.

  • PDF