• Title/Summary/Keyword: Electro-mechanical analysis

Search Result 438, Processing Time 0.022 seconds

Control of Polarity by Magnetic Array Table in Magnetic Abrasive Polishing Process (자기연마가공에서 마그네틱 어레이 테이블에 의한 극성 제어)

  • Gang, Han-Sung;Kim, Tae-Hui;Kawk, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1643-1648
    • /
    • 2010
  • It is very difficult to polish non-magnetic materials by the magnetic abrasive polishing (MAP) process because magnetic force is required for MAP, but the magnetic force for non.magnetic materials is low. In this study, we aimed to develop a magnetic array table and control the magnetic polarity such that the magnetic force can be increased for the MAP of non-magnetic materials. The newly designed magnetic array table has 32 electro magnets, and the magnetic polarity of each electro-magnet can be easily controlled by changing the electric polarity. It was analytically verified that the magnetic flux density of non-magnetic materials can be varied by varying the applied magnetic polarity.

Fractal Analysis of GIS PD Patterns (GIS 부분방전 패턴의 프랙탈 해석)

  • Choi, Ho-Woong;Kim, Eun-Young;Min, Byoung-Woon;Lee, Dong-Chul;Kim, Hee-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.55-56
    • /
    • 2006
  • In prevention and diagnostic system of GIS, pattern classification is focused on the detection of unnatural patterns in PD(Partial discharge) image data. Fractals have been used extensively to provide a description and to model mathematically many of the naturally occurring complex shapes, such as coastlines, mountain ranges, clouds, etc., and have also received increased attention in the field of image processing, for purposes of segmentation and recognition of regions and objects present in natural scenes. Among the numerous fractal features that could be defined and used for image data, fractal dimension and lacunarity have been found to be useful for recognition purposes Partial discharge(PD) occuring in GIS system is a very complex phenomenon, and more so are the shapes of the various 2-d patterns obtained during routine tests and measurements. It has been fairly well established that these pattern shapes and underlying defects causing PD have a 1:1 correspondence, and therefore methods to describe and qunatify these pattern shapes must be explored, before recognition systems based on them could be developed. The computed fractal features(fractal dimension and lacunarity) for standard library of PD data were analyzed and found to possess fairly reasonable pattern discriminating abilities. This new approach appears promising, and further research is essential before any long-term predictions can be made.

  • PDF

A Study on the Temperature Dependence of Electro-Rheological Fluids with Electric Field Control (전기장 제어에 따른 ER유체의 온도 의존성에 관한 연구)

  • Jang, Sung-Cheol;Park, Chang-Soo;Lee, Chan-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.67-72
    • /
    • 2004
  • Electro-Rheological(ER) fluids consist of suspensions of fine polarizable particles In a dielectric oil, which upon application of an external electric field control take on the characteristics of the Bingham solid. In this study, the temperature dependence of the viscosity was Investigated for an ER fluid consisting of 35 weight % of zeolite particles in hydraulic oil 46cSt. Thermal activation analysis was performed by changing the ER fluid's temperature from $-10^{\circ}C$ to $50^{\circ}C$. According to the analysis, the activation energy for flow of the ER fluid was 79.6 kJ/mole without applying electric field. On the other hand, with the electric field of 2kV/mm, the linearity between viscosity and temperature was not existed By changing the temperatures the viscosity (or shear stress) versus shear rates were measured. In this experiment shear rates were increased from 0 to $200s^{-1}$ in 2 minutes. Generally, the hydraulic oil 46cSt will be operated at the temperature of about $40^{\circ}C$, thus, the ER fluid's electric field dependence of viscosity was examined at this temperature. Also, an influence of adding the dispersant(Carbopl 940) on ER effect was discussed.

  • PDF

Analysis of dynamic characteristic applying frame on stamped base in 2.5 inch hard disk drive (프레임이 적용된 스탬프 베이스의 동특성 분석)

  • Lim, Geonyup;Park, No-Cheol;Park, Kyoung-Su;Kim, Seokhwan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • HDD has been easily exposed to the external shock and vibration because HDD has to apply to mobile devices. Therefore, the stiffness of base has been the important factors for the design of HDD. To improve the stiffness of base, the frame was applied to the base. First, the finite element model of the base was constructed. Then, the FE model was verified by modal analysis. Drop test was performed to confirming the shock simulation model. The dynamic characteristic of original base which is verified is compared with the base which is applied the frame through modal analysis and shock analysis.

Biomedical Engineering Research on Circulatory Disorders

  • Yoo Jung-Yul;Park, Jae-Hyung;Suh Sang-Ho;Shim Eun-Bo;Rhee Kye-Han;Shin, Se-Hyun;Cho, Young-I.;Kim, C. Sean;Roh, Hyung-Woon
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Circulatory disease is the number two cause of death next to cancer in Korea, while the cardiovascular disease alone is the number one cause of death in the US. In the present article, some background, current status and future prospects of biomedical engineering esearch on circulatory disorders are discussed in terms of the origin of atherosclerosis, computational fluid dynamics and medical imaging techniques, clinical treatments and fluid dynamics, advances in stents, hemodynamic analysis of artificial heart, and artificial blood. In particular, the importance of close collaboration of medicine and fluids engineering is emphasized.

  • PDF

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M.;Shahedi, S.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.1-36
    • /
    • 2016
  • In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.

Finite Element Analysis for Electron Optical System of a Field Emission SEM (전계방출 주사전자 현미경의 전자광학계 유한요소해석)

  • Park, Keun;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1557-1563
    • /
    • 2006
  • A scanning electron microscope (SEM) is well known as a measurement and analysis equipment in nano technology, being widely used as a crucial one in measuring objects or analyzing chemical components. It is equipped with an electron optical system that consists of an electron beam source, electromagnetic lenses, and a detector. The present work concerns numerical analysis for the electron optical system so as to facilitate design of each component. Through the numerical analysis, we investigate trajectories of electron beams emitted from a nano-scale field emission tip, and compare the result with that of experimental observations. Effects of various components such as electromagnetic lenses and an aperture are also discussed.

Reliability Analysis and Feilure Mechanisms of Coolant Rubber Hose Materials for Automotive Radiator (자동차 냉각기 고무호스용 재질에 대한 신뢰성 평가 및 고장메커니즘규명)

  • Kwak Seung-Bum;Choi Nak-Sam;Kang Bong-Sung;Shin Sei-Moon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.152-162
    • /
    • 2005
  • Coolant rubber hoses for automobile radiators can be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under the thermal and mechanical loadings. In this study, test analysis was carried out for evaluating the degradation and failure mechanisms of coolant hose materials. Two kinds of EPDM rubber materials applicable to the hoses were adopted: commonly-used ethylene-propylene diene monomer(EPDM) rubbers and EPDM rubbers with high resistance against electro-chemical degradation (ECD). An increase of surface hardness and a large reduction of failure strain were shown due to the formation of oxidation layer for the specimens which had been kept in a high temperature air chamber. Coolant ageing effects took place only by an amount of pure thermal degradation. The specimens degraded by ECD test showed a swelling behavior and a considerable increase in weight on account of the penetration of coolant liquid into the skin and interior of the rubber specimens. The ECD induced material softening as well as drastic reduction in strength and failure strain. However EPDM rubbers designed for high resistance against ECD revealed a large improvement in reduction of failure strain and weight. This study finally established a procedure for reliability analysis and evaluation of the degradation and failure mechanisms of EPDM rubbers used in coolant hoses for automobile radiators.

Development of Multi-body Data Conversion Program for Torque Converter Analysis (토크컨버터 해석을 위한 다물체 자료 변환 프로그램 개발)

  • Lee, Jae-Chul;Chun, Doo-Man;Ahn, Sung-Hoon;Yeo, Jun-Cheol;Jang, Jae-Duk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.58-65
    • /
    • 2008
  • The finite element programs have been developed for structure, collision, flow, dynamics, heat transfer, acoustics, electromagnetism, MEMS (Micro Electro Mechanical Systems), and etc. These programs can be classified as either "package" program or "single purpose" program. Single purpose programs usually have convenient and powerful functions, but these programs have limited expandability to different fields of analysis. Therefore, the method to converter the analysis results of single purpose program to other programs is needed. In the research, multi-body data conversion methods of 1) finite element model and 2) solid model were created to convert fluid analysis result of CFD-ACE+ to ANSYS data structure. Automatic boundary condition algorithms were developed for blade, and finite element model was compared with solid model. It is expected that, by sealess data transfer, the Multi-body Data Conversion Program could reduce the development period of torque converters.

Accelerated Life Analysis and Endurance Verification of Electro-Mechanical Actuator (항공기용 전기식 날개 구동장치의 가속 수명 분석 및 시험을 통한 내구성 검증)

  • Huh, Seok Haeng;Lee, Byung Ho;Seol, Jin Woon;Baek, Joo Hyun;Yang, Myung Seok;Kwon, Jun Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.829-835
    • /
    • 2016
  • Electro-Mechanical Actuator installed on the aircraft plays a key role in an aircraft's flight control through flight control computer. Reliable prediction of the actuator is important for the aircraft. To estimate the lifetime of a product, it is necessary to test full target life. However, it is very difficult to perform it due to the long life time of actuator but short period of development time with increasing cost. Therefore, accelerated life test has been used to reduce the test time for various reasons such as reducing product's development cycle and cost. In this paper, to predict the lifetime of the actuator, we analyzed the flight profile of aircraft and adapted the method of accelerated life test in order to accelerate failure modes that might occur under user conditions. We also set up an endurance test equipment for validating the demanded lifetime of an actuator and performed accelerated life test.