• Title/Summary/Keyword: Electro-dynamic Force

Search Result 82, Processing Time 0.022 seconds

Study on the Dynamic Modeling of a MCCB Mechanism Including Electro-Magnetic Force Effect (전자기력의 영향을 포함한 MCCB 기구부의 동역학적 모델링 방법 연구)

  • Gang, Gyeong-Rok;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.362-368
    • /
    • 2001
  • To design a limiting MCCB (Molded Case Circuit Breaker) mechanism, a dynamic modeling of the mechanism in which the electro-magnetic force effects are incorporated needs to be developed. Conventionally, electro-magnetic effects were considered separately for the design of the mechanism. In this paper, an electro-magnetic force that is induced by limited current is identified and included in the dynamic modeling of the mechanism. Thus, the electro-magnetic which is defined as a external force and the mechanical effects are simultaneously considered for the design of the mechanism which is composed of contactor, spring , link, latch and so on.

Robust Internal-loop Compensation of Pump Velocity Controller for Precise Force Control of an Electro-hydrostatic Actuator (EHA의 정밀 힘제어를 위한 펌프 속도 제어기의 강인 내부루프 보상)

  • Kim, Jong-Hyeok;Hong, Yeh-Sun
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • Force-controlled electro-hydrostatic actuators have to exhibit high backdrivability, to quickly compensate for force control errors caused by externally disturbed rod movement. To obtain high backdrivability, the servomotor for driving the hydraulic pump, should rotate exactly to such a revolution to compensate for force control errors, compressing or decompressing cylinder chambers. In this study, we proposed a modified velocity control structure, including a robust internal-loop compensator (RIC)-based velocity controller, for the servomotor to improve backdrivability of a force-controlled EHA. Performance improvement was confirmed experimentally, wherein sinusoidal velocity disturbance was applied to the force-controlled EHA, with constant reference input. Its dynamic force control errors reduced effectively, with the proposed control scheme, compared to test results with a conventional motordriver, for motor velocity control.

Contact Parameter Computation and Analysis of Air Circuit Breaker with Permanent Magnet Actuator

  • Fang, Shuhua;Lin, Heyun;Ho, S.L.;Wang, Xianbing;Jin, Ping;Huang, Yunkai;Yang, Shiyou
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.595-602
    • /
    • 2013
  • An air circuit breaker (ACB) with novel double-breaker contact and permanent magnet actuator (PMA) is presented. Three-dimensional (3-D) finite element method (FEM) is employed to compute the electro-dynamic repulsion forces, including the Holm force and Lorentz force, which are acting on the static and movable contacts. The electro-dynamic repulsion forces of different contact pieces are computed, illustrating there is an optimal number of contact pieces for the ACB being studied. The electro-dynamic repulsion force of each contact, which varies from the outer position to the inner position, is also computed. Finally, the contacts of the double-breaker are manufactured according to the analyzed results to validate the simulations.

Field-Dependent Characteristics of ER Shock Damper (ER 유체를 이용한 충격절연 댐퍼의 특성 연구)

  • 송현정;최승복;김재환;김경수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.109-114
    • /
    • 2001
  • This paper presents field-dependent dynamic characteristics of a shock damper featuring an electro-rheological(ER) damper. A cylindrical type of the shock damper is designed and manufactured on the basis of the field-dependent Bingham model. The damping force is then measured with respect to the piston velocity at various electric fields. The measured damping force is incorporated with the 1DOF shock system to analyze the shock isolation performance.

  • PDF

The Analysis of Dynamic Characteristics and the Control of Compressed Gas Expulsion System Using Electro-Hydraulic Servo Valve (전기.유압 서보밸브를 이용한 압축가스 방출시스템의 동특성 해석 및 제어)

  • Kim Y.M.;Kim J.K.;Han M.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.710-714
    • /
    • 2005
  • A dynamical analysis and PID control of a compressed gas expulsion system is performed. The purpose of this study is to develop a compressed gas discharging system and to verify the validity of the system. The electro-hydraulic servo valve is modeled as a 3th order transfer function to calculate flow force affecting expulsion valve is significantly considered. The friction force in the expulsion valve is considered as a nonliner model of stribeck effect. The dynamic characteristics of this system is examined by the computer simulation. The position control of the expulsion valve is performed by PID controller.

  • PDF

Comparison of Force Control Characteristics between Double-Rod and Single-Rod Type Electro-Hydrostatic Actuators (II): Back-Drivability (양로드형과 편로드형 EHA의 힘 제어 특성 비교(II): 역구동성)

  • Kim, Jong Hyeok;Hong, Yeh Sun
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2017
  • In this study, the back-drivability of the single-rod and double-rod type EHAs (Electro-Hydrostatic Actuators) was compared by computer simulation and experiments. The back-drivability of EHAs exhibit non-linear behavior like their force tracking performance. In case of the double-rod type EHA, the back-drivability was mostly influenced by the bulk modulus of oil that changes with the working pressure due to entrapped air. The back-drivability of the single-rod type EHA was directly affected by the operation states of its pilot-operated check valves, while the asymmetrical piston geometry and the non-linear bulk modulus of oil also made the dynamic response in building up the cylinder pressure dependent on the operating conditions.

A Study on the Dynamic Characteristics Improvement of Direct Drive Electro-mechanical Actuation System using Dynamic Force Feedback Control (동적 하중 되먹임 제어를 사용한 직구동 방식 전기기계식 구동장치시스템의 동특성 개선에 관한 연구)

  • Lee, Hee-Joong;Kang, E-Sok;Song, Ohseop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.328-341
    • /
    • 2017
  • In the control actuator system of a launch vehicle based on thrust vectoring, the interaction between electro-mechanical position servo and inertial load are combined with the dynamic characteristics of the flexible vehicle support to generate synthetic resonance. This occurred resonance is fed back to the attitude control system and can influence stability of launch vehicle. In this study, we proposed a simulation model to analyze synthetic resonance of electro-mechanical actuation system for thrust vector control and explained the results of simulation and test using dynamic force feedback control which improves dynamic characteristics of servo actuation system by reducing synthetic resonance.

The Analysis and Design of Electro-pneumatic Servo Valve (공기압 Servo Valve 설계 및 해석)

  • Ko, J.H.;Ryu, D.L.;Lee, J.H.;Kim, Y.S.;Kim, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1210-1214
    • /
    • 2008
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signal into pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristic, no air leakage at null, and can be fabricated at a low-cost. The first objective of this research is to design and fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In this paper, we has been modeled as a system consisting of coupled electro-mechanic and mechanical subsystems. The appropriateness of the model has been verified by simulation. The simulation model resolves the valve body motion and the solenoid current at high accuracy. Also, we are calculate the displacement of spool and computed results show winding currents, magnetic actuator force, flux density line, displacement, velocity, back EMF, eddy current etc.

  • PDF

Torque Predictive Control for Dynamic Performance Improvement of Clamping Force in EMB for Railroad Cars (철도 차량용 EMB의 클램핑 포스 과도응답 향상을 위한 토크 예측 제어)

  • Jang, Yoon;Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.174-184
    • /
    • 2017
  • This paper proposes a torque predictive control for dynamic performance improvement of clamping force in electro-mechanical brake (EMB) for railroad cars. In general, pneumatic braking system (PBS) is used for railroad cars. It is sensitive depending on environmental changes and it has increasing idle running time because of slow dynamic response. Additionally, the PBS has low braking efficiency in case braking torque more than standard value is applied to the brake system such as emergency braking. In order to overcome these disadvantages of the PBS, the EMB is used for the railroad cars. The EMB for railroad cars has advantages that increasing the fuel efficiency and design flexibility because it is able to decrease vehicle weight of railroad cars and secure space for design. In this paper, control method for dynamic performance improvement of clamping force in EMB for railroad car is proposed. The effectiveness of the proposed control method is verified by the simulation results.

Semi-Active Control of ER Suspension System Incorporating with Dynamic Characteristics of Damping Force (댐핑력 응답특성을 고려한 ER 현가장치의 반능동제어)

  • Han, Sang-Soo;Choi, Seung-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.452-457
    • /
    • 2000
  • This paper presents control response of a semi-active electro-rheological(ER) suspension. After showing dynamic characteristics of the ER damper, 1/4 car model is formulated by incorporating with the time constant of the damping force. $H_{\infty}$ controller compensating mass and time constant uncertainties is then designed in order to suppress vibration level of the suspension. The control responses such as vertical acceleration are presented.

  • PDF