• Title/Summary/Keyword: Electro-adhesion

Search Result 59, Processing Time 0.029 seconds

Etch resist patterning of printed circuit board by ink jet printing technology (잉크젯 인쇄기술을 이용한 인쇄회로기판의 에칭 레지스터 패터닝)

  • Seo, Shang-Hoon;Lee, Ro-Woon;Kim, Yong-Sik;Kim, Tae-Gu;Park, Sung-Jun;Yun, Kwan-Soo;Park, Jae-Chan;Jeong, Kyoung-Jin;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.108-108
    • /
    • 2007
  • Inkjet printing is a non-contact and direct writing associated with a computer. In the industrial field, there have been many efforts to utilize the inkjet printing as a new way of manufacturing, especially for electronic devices. The etching resist used in this process is an organic polymer which becomes solidified when exposed to ultraviolet lights and has high viscosity of 300 cPs at ambient temperature. A piezoelectric-driven ink jet printhead is used to dispense $20-40\;{\mu}m$ diameter droplets onto the copper substrate to prevent subsequent etching. In this study, factors affecting the pattern formation such as printing resolution, jetting property, adhesion strength, etching and strip mechanism, UV pinning energy have been investigated. As a result, microscale Etch resist patterning of printed circuit board with tens of ${\mu}m$ high have been fabricated.

  • PDF

Electrical and Adhesion Properties of Photoimageable Silver Paste with Glass Addtion

  • Lim, Jong-Woo;Kim, Hyo-Tae;Lee, Eun-Heay;Yoon, Young-Joon;Koo, Eun-Hae;Kim, Jong-Hee;Park, Eun-Tae;Lee, Jong-Myun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.208-208
    • /
    • 2008
  • Micro patterning of conductor line/space on LTCC green sheet in the LTCC module is an important process for miniaturization in 3D integrated circuits. This work presented the effect of inorganic binders on the microstructure, adhesion, electrical resistivity, shrinkage and line/space resolution, which is a part of study in photoimageable conductor paste. The photoimageable conductor paste contains silver powder, polymer binder, monomer, photo-initiator, UV absorber, and solvent. The inorganic binders were furnished with varied weight percentage of anorthite, diopside and MLS-62 glass frits from 0% to 7%. The Line/space sizes thus obtained was under 25 micron.

  • PDF

Single Carbon Fiber/Acid-Treated CNT-Epoxy Composites by Electro-Micromechanical Technique and Wettability Test for Dispersion and Self-Sensing (젖음성 시험과 전기-미세역학 시험법과 통한 단 카본섬유/산처리된 CNT-에폭시 나노복합재료의 분산과 자체-감지능)

  • Jang, Jung-Hoon;Wang, Zuo-Jia;GnidaKouong, Joel;Gu, Ga-Young;Park, Joung-Man;Lee, Woo-Il;Park, Jong-Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • Dispersion and self-sensing evaluation for single-carbon fiber reinforced in three different acid-treated CNT-epoxy nanocomposites were investigated by electro-micromechanical techniques and wettability tests. Self-sensing based on contact resistivity exhibited more noise for single carbon fiber/acid-treated CNT-epoxy composites than it did for untreated CNT. However, the apparent modulus was higher the acid treated case than the untreated case which is attributed to better stress transfer. The interfacial shear strength (IFSS) between carbon fibers and the CNT-epoxy was lower than that between carbon fiber and neat epoxy due to the increased viscosity associated with the addition of the CNT. The CNT-epoxy nanocomposite exhibited more hydrophobicity than did neat epoxy. Change in the thermodynamic work of adhesion was consistent with changes in the IFSS but disproportional to that of the apparent modulus. The optimum condition of acid treatment on the need can be obtained instead of the maximum condition.

  • PDF

Effect of Protective layer on LTCC Substrate for Thin Metal Film Patterns (LTCC 보호층 형성에 따른 박막 전극패턴에 관한 연구)

  • Kim, Yong-Suk;Yoo, Won-Hee;Chang, Byeung-Gyu;Park, Jung-Hwan;Yoo, Je-Gwang;Oh, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.349-355
    • /
    • 2009
  • Metal thin film patterns on a LTCC substrate, which was connected through inner via and metal paste for electrical signals, were formed by a screen printing process that used electric paste, such as silver and copper, in a conventional method. This method brought about many problems, such as non uniform thickness in printing, large line spaces, and non-clearance. As a result of these problems, it was very difficult to perform fine and high resolution for high frequency signals. In this study, the electric signal patterns were formed with the sputtered metal thin films (Ti, Cu) on an LTCC substrate that was coated with protective oxide layers, such as $TiO_2$ and $SiO_2$. These electric signal patterns' morphology, surface bonding strength, and effect on electro plating were also investigated. After putting a sold ball on the sputtered metal thin films, their adhesion strength on the LTCC substrate was also evaluated. The protective oxide layers were found to play important roles in creating a strong design for electric components and integrating circuit modules in high frequency ranges.

ADHESION PHENOMENON AND ITS APPLICATION TO MANIPULATION FOR MICRO-ASSEBMLY

  • Takahashi, Kunio;Himeno, Hideo;Saito, Shigeki;Onzawa, Tadao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.781-784
    • /
    • 2002
  • Adhesion phenomenon is more significant for smaller objects, because adhesional force is proportional to size of the objects while gravitational force is proportional to the third power of it. For the purpose of microassembly, theoretical understanding is required for the Adhesion phenomenon. Authors have developed a force measurement system in an ultra-high vacuum chamber of Auger electron spectroscopy. The force between arbitrary combination of materials can be measured at a pressure less than 100 nPa after and before Ar ion sputtering and chemical analysis for several atomic layers of the surface. The results are successfully interpreted with a theory of contact mechanics. Since surface energy is quite important in the interpretation, electronic theory is used to evaluate the surface energy. In the manipulation of small objects, the adhesional force is always attractive. Repulsive force is essential for the manipulation. It can be generated by Coulomb interaction. The voltage required for detachment is theoretically analyzed and the effect of boundary conditions on the detachment is obtained. The possibility and limitations of micro-manipulation using both the adhesion phenomenon and Coulomb interaction are theoretically clarified. Its applicability to nano-technology is found to be expected.

  • PDF

Improvement of Interfacial Adhesion of Plasma Treated Single Carbon Fiber Reinforced CNT-Phenolic Nanocomposites by Electrical Resistance Measurement and Wettability (젖음성 및 전기저항 측정을 이용한 플라즈마 처리된 단일 탄소섬유 강화 탄소나노튜브-페놀수지 나노복합재료의 계면접착력 향상)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.12 no.3
    • /
    • pp.88-93
    • /
    • 2011
  • Optimal dispersion and fabrication conditions of carbon nanotube (CNT) embedded in phenolic resin were determined by electrical resistance measurement; and interfacial property was investigated between plasma treated carbon fiber and CNT-phenolic composites by electro-micromechanical techniques. Wettability of carbon fiber was improved significantly after plasma treatment. Surface energies of carbon fiber and CNT-phenolic nanocomposites were measured using Wilhelmy plate technique. Since surface activation of carbon fiber, the advancing contact angle decreased from $65^{\circ}$ to $28^{\circ}$ after plasma treatment. It was consistent with static contact angle results of carbon fiber. Work of adhesion between plasma treated carbon fiber and CNT-phenolic nanocomposites was higher than that without modification. The interfacial shear strength (IFSS) and apparent modulus also increased with plasma treatment of carbon fiber.

Analysis of Ni/Cu Metallization to Investigate an Adhesive Front Contact for Crystalline-Silicon Solar Cells

  • Lee, Sang Hee;Rehman, Atteq ur;Shin, Eun Gu;Lee, Doo Won;Lee, Soo Hong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.217-221
    • /
    • 2015
  • Developing a metallization that has low cost and high efficiency is essential in solar-cell industries, to replace expensive silver-based metallization. Ni/Cu two-step metallization is one way to reduce the cost of solar cells, because the price of copper is about 100 times less than that of silver. Alkaline electroless plating was used for depositing nickel seed layers on the front electrode area. Prior to the nickel deposition process, 2% HF solution was used to remove native oxide, which disturbs uniform nickel plating. In the subsequent step, a nickel sintering process was carried out in $N_2$ gas atmosphere; however, copper was plated by light-induced plating (LIP). Plated nickel has different properties under different bath conditions because nickel electroless plating is a completely chemical process. In this paper, plating bath conditions such as pH and temperature were varied, and the metal layer's structure was analyzed to investigate the adhesion of Ni/Cu metallization. Average adhesion values in the range of 0.2-0.49 N/mm were achieved for samples with no nickel sintering process.

Evaluation of physical properties of Zn-Al metal spray coating according to concrete surface and treatment method (콘크리트 표면 처리 방법 및 용사면에 따른 Zn-Al 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Yang, Hyun Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.59-60
    • /
    • 2022
  • When a metal sprayed film of several hundred ㎛ on the concrete surface is possible to 80 dB of shielding effect electromagnetic waves (ElectroMagnetic Pulse, EMP). Therefore, in this study, as a way to secure EMP shielding performance by applying a metal spray coating showing excellent EMP shielding performance to a concrete structure, the metal spray welding efficiency and thin film adhesion performance according to the concrete spray direction and surface treatment method were evaluated. Metal sprayed efficieny according to the metal spraying direction and method was confirmed that the difference was insignificant by applying the roughening agent. However, the method of strengthening the concrete surface and applying the sealing agent show maximum adhesion strength of 3.98 MPa compared to other methods, and it is judged that this method can be utilized for the metal spraying method for concrete EMP shielding.

  • PDF

Interfacial Properties of Electrodeposited Carbon Fiber/Epoxy Composites using Electro-Micromechanical Techniques and Nondestructive Evaluations

  • Park, Joung-Man;Lee, Sang-Il
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • Interfacial adhesion and nondestructive behavior of electrodeposited (ED) carbon fiber rein-forced composites were evaluated using electro-micromechanical techniques and acoustic emission (AE). The interfacial shear strength (IFSS) of the ED carbon fiber/epoxy composites was higher than that of the untreated fiber. This might be expected because of the possibility of chemical or hydrogen bonding in an electrically adsorbed polymeric interlayer. The logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to infinity when fiber fracture occurred, whereas that of the ED composite increased relatively gradually to infinity. This behavior may arise from the retarded fracture time due to enhanced IFSS. In single- and ten-carbon fiber composites, the number of AE signals coming from interlayer failure of the ED carbon fiber composite was much larger than that of the untreated composite. As the number of the each first fiber fractures increased in the ten-carbon fiber composite, the electrical resistivity increased stepwise, and the slope of the logarithmic electrical resistance increased.

  • PDF

Historical Trends of Micromechanical Testing Methods for Structural Fiber Reinforced Composites to Evaluate the Interfacial Adhesion (구조용 섬유강화복합재료의 계면접착 특성 평가를 위한 미세역학시험법의 연구동향 고찰)

  • Park, Joung-Man;Kim, Jong-Hyun;Kim, Dong-Uk;Kwon, Dong-Jun
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.59-69
    • /
    • 2022
  • In composite materials, the adhesion and interfacial properties were the most important factors to obtain high performance of mechanical properties. This review paper had been focused on the micromechanical evaluation methods for the interfacial property historically. The interfacial property of fiber-reinforced composites (FRC) could be evaluated using only a single fiber and matrix via various micromechanical testing methods. Self-sensing due to the fracture behavior of FRC could be determined and discussed more critically and clearly using electro-micromechanical evaluation. In this paper, the research trends for micro-mechanical evaluation of composites was summarized, and their practical applications would be suggested in the future.