• Title/Summary/Keyword: Electro-Pneumatic

Search Result 37, Processing Time 0.054 seconds

The Analysis and Design of Electro-pneumatic Servo Valve (공기압 Servo Valve 설계 및 해석)

  • Ko, J.H.;Ryu, D.L.;Lee, J.H.;Kim, Y.S.;Kim, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1210-1214
    • /
    • 2008
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signal into pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristic, no air leakage at null, and can be fabricated at a low-cost. The first objective of this research is to design and fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In this paper, we has been modeled as a system consisting of coupled electro-mechanic and mechanical subsystems. The appropriateness of the model has been verified by simulation. The simulation model resolves the valve body motion and the solenoid current at high accuracy. Also, we are calculate the displacement of spool and computed results show winding currents, magnetic actuator force, flux density line, displacement, velocity, back EMF, eddy current etc.

  • PDF

Characteristic Analysis and Experiment of Pneumatic Servo Valve (공기압 서보밸브 특성해석 및 실험)

  • Kim, Dong-Soo;Lee, Won-Hee;Choi, Byung-Oh
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.967-973
    • /
    • 2004
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve.

  • PDF

Development of Direct Drive type Pneumatic Servo Valve (직동식 공기압 서보밸브 개발)

  • Kim, Dong-Su;Lee, Won-Hui;Choe, Byeong-O
    • 연구논문집
    • /
    • s.34
    • /
    • pp.69-77
    • /
    • 2004
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. Further, the performance of pneumatic servo valve has been verified through an overall performance test on the developed product.

  • PDF

Development of automatic measurement system for dynamic respose time of pneumatic solenoid valve (공압밸브의 동적응답 특성측정 자동화 시스템 개발)

  • 강보식;김형의
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.974-978
    • /
    • 1991
  • Electro-pneumatic valve is an electro-mechanical device which converts electric signal into pneumatic flow mu or pressure. A measurement of dynamic response time is very important to evaluate valve performance. Dynamic response time of electro-pneumatic valve has a variation accordance with valve types, operating way and test standard. In this study, automatic measurement system of dynamic response time is composed based on test condition of dynamic response time test standard(CETOP, JIS). Also, in this study test pressure variation characteristics accordance with variation of solenoid excitation power, and we developed dynamic response measurement system enable to compare of and analyze these two characteristics.

  • PDF

Electro-pneumatic regulator using multilayer PZT actuator (적층형 압전액추에이터 방식 전-공 레귤레이터)

  • Yun, So-Nam;Kim, Chan-Yong;Park, Jung-Ho;Youn, Dong-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.979-984
    • /
    • 2007
  • This paper presents a new control mechanism for the proportional pressure control which is accomplished by electro-pneumatic regulator using two PZT actuators. The electro-pneumatic regulator of this study is 2-stage type and consists of two piezoelectric actuators, a controller and a main poppet valve. The piezoelectric actuators are multilayer bender type and are controlled by digital signal. Proportional pressure control technique is very important because that can derive improvement of product quality and driving ability in the pneumatic system. Solenoid actuator method for pressure control is widely used but this actuator has a high power consumption characteristics. So new actuator is required for the energy saving. In this study, PZT actuator for the pressure control was fabricated and experimented instead of the conventional type solenoid actuator. Experiments for the new control mechanism of the elector-pneumatic regulator were operated under the input condition of 0.4[MPa] and it was confirmed that this mechanism has a good control characteristics to the response sensitivity and hysteresis.

  • PDF

A Study on Energy Saving Algorithm of Electro-Pneumatic Regulator with Modified PWM Driven Method

  • Kim, Hyoung-Seok;Ahn, Kyoung-Kwan;Lee, Byung-Ryong;Yun, So-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1339-1345
    • /
    • 2006
  • The development of an accurate and energy saving electro-pneumatic regulator that may be applied to a variety of practical pressure control applications is described in this paper. A novel modified pulse width modulation (MPWM) valve pulsing algorithm allows the electro-pneumatic regulator to become energy saving system. A comparison between the system response of conventional PWM algorithm and that of the modified PWM (MPWM) algorithm shows that the control performance is almost the same, but energy saving is greatly improved by adopting this new MPWM algorithm. The effectiveness of the proposed control algorithm is demonstrated through experiments with various reference trajectories.

Optimal design of an electro-pneumatic automatic transfer system

  • Um, Taijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.71-75
    • /
    • 1994
  • This paper presents a method of optimal design of an automatic transfer system which is controlled by the electro-pneumatic servo scheme. The electro-pneumatic automatic transfer system can move parts to desired points or displace defective parts. The dynamic performance of the system can be examined by observing the behavior of the output. The output of the servo control system is the motion of the cylinder, pneumatic actuator. The dynamic performance of the cylinder is governed by the parameters of the components of the entire system. The optimal design can be accomplished by selecting of the parameters such that the desired dynamic performance of the cylinder is obtained. The optimal set of parameters might be obtained through the repeated simulations. Repeated simulations, however, is not effective to determine the optimal set of parameters since the set of parameters is large. This paper presents modeling, application of an optimization method, and the numerical results. The optimization algorithm utilizes the concept of the conjugate gradient method. The results show that the suggested optimization scheme can render faster convergence of iteration compared to other method based on an algebraic optimization method and can reduce the design efforts.

  • PDF

A study on Magnetic Field Analysis of Pneumatic Solenoid Valve and its Application to Valve Design (공기압용 전자밸브의 자장해석과 밸브설계에의 응용)

  • Gang, Bo-Sik;Kim, Hyeong-Ui
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.41-48
    • /
    • 1990
  • Electro-pneumatic valves are an electro-mechanical device which convert electric signal into pneumatic flow rate or pressure signal. Recently, the development tendency of electro-pneumatic valve is to make the valve with more compact and less electric power consumption style. To make the valve such as a style, the role of solenoid part is very important. This paper is used in the finite-element method for the purpose of evaluating the magnetic property of solenoid and analyze flux distribution of solenoid theoretically. From flux contour line which is obtained by numerical analysis, it verified that the plunger shape and physical property of solenoid part have influence on saturation phenomenon and leakage of magnetic fluxs. This paper made an experiment on the measurement of dynamic response time and force in order to confirm the propety of analytic result, and confirmed a good agreement between analysis results and experiment results.

  • PDF

A Study of Electromagnetic Actuator for Electro-pneumatic Driven Ventricular Assist Device

  • Jung Min Woo;Hwang Chang Mo;Jeong Gi Seok;Kang Jung Soo;Ahn Chi Bum;Kim Kyung Hyun;Lee Jung Joo;Park Yong Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.393-398
    • /
    • 2005
  • An electromechanical type is the most useful mechanism in the various pumping mechanisms. It, however, requires a movement converting system including a ball screw, a helical cam, or a solenoid-beam spring, which makes the device complex and may lessen reliability. Thus, the authors have hypothesized that an electromagnetic actuator mechanism can eliminate the movement converting system and that thereby enhance the mechanical reliability and operative simplicity of an electro­pneumatic pump. The purpose of this study was to show a novel application of electromagnetic actuator mechanism in pulsatile pump and to provide preliminary data for further evaluations. The electromagnetic actuator consists of stators with a single winding excitation coil and movers with a high energy density neodymium-iron-boron permanent magnet. A 0.5mm diameter wire was used for the excitation coil, and 1000 turns were wound onto the stators core with parallel. A prototype of extracorporeal electro-pneumatic pump was constructed, and the pump performance tests were performed using a mock system to evaluate the efficiency of the electromagnetic actuator mechanism. When forward and backward electric currents were supplied to the excitation coil, the mover effectively moved back and forth. The nominal stroke length of the actuator was 10mm. The actuator dimension was 120mm in diameter and 65mm in height with a mass of 1.4kg. The prototype pump unit was 150mm in diameter, 150mm in thickness and 4.5kg in weight. The maximum force output was 70N at input current of 4.5A and the maximum pump rate was 150 beats per minute. The maximum output was 2.0 L/minute at a rate of 80bpm when the afterload was 100mmHg. The electromagnetic actuator mechanism was successfully applied to construct the prototype of extracorporeal electro­pneumatic pump. The authors provide the above results as a preliminary data for further studies.