• Title/Summary/Keyword: Electro-Optic Modulator

Search Result 55, Processing Time 0.019 seconds

Photonic Mixing Based Microcellular System Operating in Millimeter-wave Band (광믹싱을 사용한 밀리미터파 마이크로 셀룰라 시스템)

  • Kim, Yeon-Kyu;Park, Hung-Su;Yang, Hoon-Gee
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.54-61
    • /
    • 1999
  • This paper proposes a new optic link structure applicable to broad-band wireless access microcellularsystem servicing in the millimeter wave frequency band. The proposed structure utilizes photonic mixing by exploiting the nonlinear property of EOMs, which leads to the frequency up-conversion at the CS and thus, electrical mixing at a BS is not required. Moreover, via transmitting an additional optical millimeter wave carrier into the Bs, the dispenses with an active optic source, which miniaturizes the BS. We analyze CNR, IM3/C in the downlink and SFDR in the uplink. Through simulation using the typical parameter values we also show the feasibility of the proposed system based on the requirements in the current microcellular system.

  • PDF

A Study on the Fiber-Optic Voltage Sensor Using EMO-BSO (EOM-BSO 소자를 이용한 광전압센서에 관한 연구)

  • Kim, Yo-Hee;Lee, Dai-Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.119-125
    • /
    • 1990
  • This paper describes fiber optic voltage sensor using EOM-BSO (Electro-Optic Modulator-Bismuth Silicon Oxcide). Transceiver has an electical/optical converter and an optical/electrical converter which consist of light emitting diode, PIN-PD, and electronic circuits. Multimode fiber cable of $100/140{\mu}m$ core/clad diameter is used for connecting the transceiver to fiber cable and fiber optic voltage sensor. Before our experiments, by applying the Maxwell equations and wave equations, We derive matrix equation on wave propagation in the BSO single crystal. And also we derive optimal equation on intensity modulation arising through an analyzer. According to experi-mental results, fiber optic voltage sensor has maximum $2.5{\%}$ error within the applied AC voltage of 800V. As the applied voltage increases, saturation values of voltage sensor also increase. This phenomenon is caused by optical rotatory power of BSO single crystal. And temperature dependence of sensitivity for fiber optical rotatory power of BSO single crystal. And temperature dependence of sensitivity for fiber optic voltage sensor in the temperature range from$-20^{\circ}C\to\60^{\circ}C$ are measured within ${\pm}0.6{\%}$. And frequency characteristics of the voltage sensor has good frequency characteristics from DC to 100kHz.

  • PDF

A Study on the Integrated-Optical Electric-Field Sensor utilizing Ti:LiNbO3 Y-fed Balanced-Bridge Mach-Zehnder Interferometric Modulators (Ti:LiNbO3 Y-fed Balanced-Bridge 마하젠더 간섭 광변조기를 이용한 집적광학 전계센서에 관한 연구)

  • Jung, Hongsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • We have demonstrated a $Ti:LiNbO_3$ electro-optic electric-field sensors utilizing a $1{\times}2$ Y-fed balanced-bridge Mach-Zehnder interferometric (YBB-MZI) modulator which uses a 3-dB directional coupler at the output and dipole patch antenna. The operation and design were proved by the BPM simulation. A dc switching voltage of ~16.6 V and an extinction ratio of ~14.7 dB are observed at a wavelength of $1.3{\mu}m$. For a 20 dBm rf power, the minimum detectable electric-fields are ~1.12 V/m and ~3.3 V/m corresponding to a dynamic range of about ~22 dB and ~18 dB at frequencies 10 MHz and 50 MHz, respectively. The sensors exhibit almost linear response for the applied electric-field intensity from 0.29 V/m to 29.8 V/m.

Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing (광공진 현상을 이용한 입체 영상센서 및 신호처리 기법)

  • Park, Yong-Hwa;You, Jang-Woo;Park, Chang-Young;Yoon, Heesun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.