• 제목/요약/키워드: Electro-Mechanical Linear Actuator

검색결과 18건 처리시간 0.024초

선형홀센서를 이용한 전기식 구동장치의 속도 신호 구현 (A New Velocity Measurement Method using Linear Type Hall-effect Sensor for Electro-mechanical Fin Actuator)

  • 구정회;송치영
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.70-75
    • /
    • 2010
  • The objective of this paper is to propose a new velocity measurement method for an electro-mechanical fin actuator. The model of the electro-mechanical fin actuator includes uncertainties such as unknown disturbances and parameter variations in flight condition. So, an electro-mechanical fin actuator system needs robust control algorithm which requires not only position information but also velocity information. Usually, analog tachometers have been used for velocity feedback in an electro-mechanical fin actuator. However, using these types of sensors have problems such as the cost, space, and malfunction. These problems lead to propose a new velocity measurement method using linear type Hall-effect sensor. In order to verify the proposed method, several experiments are performed using Model Following Sliding Mode Controller(MFSMC). It is shown that the MFSMC with a new velocity measurement method using linear type Hall-effect sensor can satisfy the requirements without using of velocity sensor.

Evaluation of Structural Safety of Electro-Mechanical Linear Actuator and Load Simulator with Plate Spring

  • Kim, Dong-Hyeop;Kim, Young-Cheol;Kim, Sang-Woo;Lee, Jong Whan
    • 항공우주시스템공학회지
    • /
    • 제14권6호
    • /
    • pp.18-25
    • /
    • 2020
  • This study investigated the structural behaviors and safety of an electro-mechanical linear actuator and a load simulator with a plate spring. The material and dimensions of the plate spring were determined by theoretically calculating the stress and torsional angle for the rating load of the actuator. Thereafter, a flexible multibody dynamics (FMBD) analysis was conducted on the linear actuator and load simulator to confirm the performance of the load simulator and acquire the reaction forces acting on the actuator and simulator. The structural safety of the linear actuator and load simulator was evaluated via finite element analysis using the aforementioned reaction forces. Consequently, the proposed linear actuator and load simulator were determined to be structurally safe; however, the safety factors for the actuation rod and the housing on the actuator were excessively high. Therefore, the weight and cost must be reduced to improve their design parameters in the future.

CONTROL PERFORMANCE IMPROVEMENT OF AN EMV SYSTEM USING A PM/EM HYBRID ACTUATOR

  • Ahn, H.J.;Chang, J.U.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.429-436
    • /
    • 2007
  • In this study, we improved control performance of an EMV (electromechanical valve) system using a PM/EM (permanent magnet/electromagnet) hybrid EMA (electromagnetic actuator) and showed the feasibilities of both soft landing and fast transition of the EMV system using a simple PID control. The conventional EMV systems using only EM show significant nonlinear characteristics. Therefore, it is very difficult to control the valve position and several complex control schemes are used. This paper focused on the control performance improvement using a PM/EM hybrid actuator. In particular, a PM is used as a key design parameter such as a bias current of a magnetic bearing in order to improve the linear characteristic of the actuator, although most PM/EM hybrid actuators use a PM as a power saver during valve-open and -closed states. First, a FE (finite element) analysis was performed to confirm its linear static force characteristics. Then, both a test rig and a valve control system were built in order to prove experimentally the control performance improvement of the actuator. Finally, feasibilities of both soft landing and fast transition of the system were shown experimentally through gain-scheduled PID (proportional derivative integral) control.

전기-정유압 구동기의 확장 상태 관측기 기반 비선형 서보 제어 (Extended-State-Observer-Based Nonlinear Servo Control of An Electro-Hydrostatic Actuator)

  • 전기호;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.61-70
    • /
    • 2017
  • In this study, an extended-state-observer (ESO) based non-linear servo control is introduced for an electro-hydrostatic actuator (EHA). Almost hydraulic systems not only are highly non-linear system that has mismatched uncertainties and external disturbances, but also can not measure some states. ESO that only use an output signal can be used to compensate these uncertainties and estimate unmeasurable states. To improve the position tracking performance, the barrier Lyapunov function (BLF) that can guarantee an output tolerance is introduced for the position tracking error signal of back stepping control procedures. Finally, the proposed servo control is compared with the proportional-integral (PI) control.

전륜 조향용 전기식 작동기 피로수명 평가 (Evaluation of Fatigue Life of Electro-Mechanical Actuator for Front Wheel Steering)

  • 김영철;김현기;김동협;김상우
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.126-132
    • /
    • 2023
  • 최근 항공분야에서는 온실가스 배출 저감을 위한 친환경 기술이 강조되면서 전기를 주동력원으로 기계적인 직진, 회전 운동을 제어하는 전기식 작동기의 다양한 연구가 진행되고 있다. 본 연구에서는 단일통로 항공기 전륜조향용 전기식 작동기의 피로수명을 평가하였다. 구조해석을 통해 작동기의 취약부위들을 선정하여 이들에 대한 단위하중 응력표를 구축하였고, 각 하중 프로파일에 대한 대표응력을 계산하였다. 또한 낙수계수법으로 대표응력 그룹의 개별 프로파일을 추출하고, 이를 소재의 S-N 선도에 적용하여 개별 프로파일에 대한 손상을 계산하였다. 최종적으로 손상누적법칙으로 취약 부위들에서의 총 손상을 산출하였고, 단일통로 항공기 전륜조향용 전기식 작동기의 취약 부위들에 대한 피로수명을 평가하였다.

전기유압식 스프링복귀 액추에이터 정특성 (Static Characteristics of Electro-Hydraulic Spring Return Actuator)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권2호
    • /
    • pp.8-14
    • /
    • 2012
  • Electro-hydraulic spring return actuator(ESRA) is utilized for air conditioning facilities in a nuclear power plant. It features self-contained, hydraulic power that is integrally coupled to a single acting hydraulic cylinder and provides efficient and precise linear control of valves as well as return of the actuator to the de-energized position upon loss of power. In this paper, the algebraic equations of ESRA at steady-state have been developed for the analysis of static characteristics that includes control pressure and valve displacement of pressure reducing valve, flow force on flapper as well as its displacement over the entire operating range. Also, the effect of external load on piston deviation is investigated in terms of linear system analysis. The results of static characteristics show the unique feature of force balance mechanism and can be applied to the stable self-controlled mechanical system design of ESAR.

스털링 냉동기용 리니어 왕복 액추에이터의 동특성 해석 (Dynamic Analysis of Linear Oscillatory Actuator for Stirling Refrigerator)

  • 정상섭;윤인기;장석명;박성제;홍용주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.673-675
    • /
    • 2002
  • In this paper. the lumped electrical circuit approach of mass/spring system is used to model the mechanical aspects according to the frequency. Therefore, the mass/spring system can be dealt with here and linked with the equivalent circuit of electric linear oscillatory actuator(LOA). Analysis models are double-coil type linear compressor for stirling refrigerator. The compressor consists of the moving coil LOA, piston, and spring. The electro-mechanical system with mass and spring can be represented using the lumped electrical circuit. We present the system impedance and dynamics of moving coil linear compressor.

  • PDF

양로드형과 편로드형 EHA의 힘 제어 특성 비교(II): 역구동성 (Comparison of Force Control Characteristics between Double-Rod and Single-Rod Type Electro-Hydrostatic Actuators (II): Back-Drivability)

  • 김종혁;홍예선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.17-22
    • /
    • 2017
  • In this study, the back-drivability of the single-rod and double-rod type EHAs (Electro-Hydrostatic Actuators) was compared by computer simulation and experiments. The back-drivability of EHAs exhibit non-linear behavior like their force tracking performance. In case of the double-rod type EHA, the back-drivability was mostly influenced by the bulk modulus of oil that changes with the working pressure due to entrapped air. The back-drivability of the single-rod type EHA was directly affected by the operation states of its pilot-operated check valves, while the asymmetrical piston geometry and the non-linear bulk modulus of oil also made the dynamic response in building up the cylinder pressure dependent on the operating conditions.

양로드형과 편로드형 EHA의 힘 제어 특성 비교(I): 추종 성능 (Comparison of Force Control Characteristics Between Double-Rod and Single-Rod Type Electro-Hydrostatic Actuators (I): Tracking Performance)

  • 김종혁;홍예선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.9-16
    • /
    • 2017
  • In this study, the force tracking performance of the single-rod and double-rod type EHAs (Electro-Hydrostatic Actuators) was compared by computer simulation and experiments. The force-controlled EHAs exhibit non-linear behavior that are significantly dependent on operation conditions. The investigation focused on localizing the parameters that provide significant rise to the non-linearity. For this, the single-rod and double-rod type EHAs were mathematically expressed to derive their linear models. In parallel, they were modeled by a commercial simulation program including non-linear properties based on experimental results. It was shown that the dependency of the bulk modulus of oil with entrapped air on working pressure dominated the non-linearity in force control performance in case of the double-rod type EHA. The force control of the single-rod type EHA was influenced by much more elements. Besides the asymmetrical piston geometry and the non-linear bulk modulus of oil, its pilot-operated check valves made it dependent not only on the magnitude of reference input but also on its direction.

eVTOL 항공기 블레이드 피치 제어용 선형 구동기 기본설계 모델의 구조 안전성 평가 (Structural Safety Evaluation of Basic Design Model of Linear Actuator for Blade Pitch Control of eVTOL Aircraft)

  • 김영철;김동협;김상우;강정현;김도형
    • 항공우주시스템공학회지
    • /
    • 제16권6호
    • /
    • pp.106-113
    • /
    • 2022
  • 본 연구에서는 eVTOL 개인항공기의 개별 블레이드 피치 제어용 선형 구동기 기본설계 모델에 대한 구조 안전성을 검토하였다. Stall 하중에 대한 정적 구조 안전성을 검토하기 위해 유한요소법을 이용한 응력해석을 수행하여 안전여유율을 계산하였다. 또한 선형 구동기의 운용조건에 대한 피로수명을 평가하기 위해 피로 해석을 수행하였다. 다물체 동역학 분석을 통해 블레이드 피치각에 따른 하중이력을 산출하였다. 또한 정하중 해석에 정격하중을 적용하여 응력 분포를 산출하고 피로 해석에 활용하였다. 해석 결과, 선형 구동기의 모든 부품은 0 이상의 안전여유율이 계산되었고, 107 cycles 이상의 피로수명이 산출되어 구조적으로 안전함이 확인되었다.