• 제목/요약/키워드: Electro-Magnetic Actuator

검색결과 59건 처리시간 0.032초

CONTROL PERFORMANCE IMPROVEMENT OF AN EMV SYSTEM USING A PM/EM HYBRID ACTUATOR

  • Ahn, H.J.;Chang, J.U.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.429-436
    • /
    • 2007
  • In this study, we improved control performance of an EMV (electromechanical valve) system using a PM/EM (permanent magnet/electromagnet) hybrid EMA (electromagnetic actuator) and showed the feasibilities of both soft landing and fast transition of the EMV system using a simple PID control. The conventional EMV systems using only EM show significant nonlinear characteristics. Therefore, it is very difficult to control the valve position and several complex control schemes are used. This paper focused on the control performance improvement using a PM/EM hybrid actuator. In particular, a PM is used as a key design parameter such as a bias current of a magnetic bearing in order to improve the linear characteristic of the actuator, although most PM/EM hybrid actuators use a PM as a power saver during valve-open and -closed states. First, a FE (finite element) analysis was performed to confirm its linear static force characteristics. Then, both a test rig and a valve control system were built in order to prove experimentally the control performance improvement of the actuator. Finally, feasibilities of both soft landing and fast transition of the system were shown experimentally through gain-scheduled PID (proportional derivative integral) control.

평판형 전자기 엑츄에이터의 초기응답속도 향상을 위한 쇼티트 턴에 관한 연구 (Single-axis Flat Electro-Magnetic Actuator using Shorted Turn for Fast Initial Response)

  • 황기일;김진호
    • 한국자기학회지
    • /
    • 제19권6호
    • /
    • pp.222-226
    • /
    • 2009
  • 기존의 평판형 전자기 엑츄에이터에 쇼티드 턴을 적용한 새로운 형태의 평판형 전자기 엑츄에이터를 제안하였다. 기존의 평판형 전자기 엑츄에이터에서 발생하는 인덕턴스에 의한 초기응답 지연현상을 줄이기 위해 본 논문에서는 기존의 엑츄에이터의 요크와 요크 사이에 중간요크(center yoke)를 추가하고, 쇼티드 턴을 적용한 새로운 형태의 평판형 전자기 엑츄에이터를 제안 하고, 상용 자기장 해석 프로그램인 MAXWELL을 이용한 시뮬레이션을 통해 동적 성능 향상을 검증 하였다.

공기압 Servo Valve 설계 및 해석 (The Analysis and Design of Electro-pneumatic Servo Valve)

  • 고진호;류동렬;이주호;김영석;김동수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1210-1214
    • /
    • 2008
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signal into pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristic, no air leakage at null, and can be fabricated at a low-cost. The first objective of this research is to design and fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In this paper, we has been modeled as a system consisting of coupled electro-mechanic and mechanical subsystems. The appropriateness of the model has been verified by simulation. The simulation model resolves the valve body motion and the solenoid current at high accuracy. Also, we are calculate the displacement of spool and computed results show winding currents, magnetic actuator force, flux density line, displacement, velocity, back EMF, eddy current etc.

  • PDF

Analysis and Design of Separated Permanent-Magnet Actuator for 225AF Molded Case Circuit Breaker

  • Park, Hyeon-Jeong;Kim, So-Hyun;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.487-490
    • /
    • 2014
  • The conventional motor-driven MCCB (molded-case circuit breaker) is not only large in size, but also inefficient in performance. To solve these problems, this paper suggests SPMA (separate permanent-magnet actuator), a novel magnetic actuator. In this paper, SPMA is designed for a 225AF MCCB and compared to a conventional motor-driven MCCB and to an EMFA (electro-magnetic force driving actuator)-type MCCB.

마이크로 전자석과 자기변형박막을 이용한 마이크로 엑추에이터의 제작 (The Fabrication of Micro Actuator Used Micro Electro-Magnet and Magnetostrictive Thin Film)

  • 서지훈;양상식;정종만;임상호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3328-3330
    • /
    • 1999
  • In this paper, the fabrication of a micro actuator with a micro electromagnet and an actuator diaphragm is presented. The micro electromagnet consists of a magnetic core and a micro inductive planar coil. The actuator diaphragm is the p+ silicon diaphragm on both sides of which magnetostrictive materials are deposited by sputtering. The micro electromagnet is fabricated by sputtering, evaporating, etching and electroplating. The magnetic flux density of the micro electromagnet is measured by using the gauss meter. The deflection of the actuator diaphragm is measured by using the laser vibrometer and optic microscope.

  • PDF

리니어모터 스테이지 진직도 향상을 위한 서보 시스템 계발 (Development of a Servo-system for Straightness Improvement of Linear Motor Stages)

  • 최정덕;강민식
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권1호
    • /
    • pp.33-39
    • /
    • 2005
  • In this paper, we propose a slider servo-mechanism driven by electro-magnetic actuator to improve straightness of linear motor stages. Based on axial-position dependent deterministic characteristics of the straightness error, a feedforward compensation control is appled to reduce the straightness error. In the consideration of uncertain properties of friction and its effects on positioning accuracy, a sliding mode control is applied. The effectiveness of the suggested mechanism and the control performances are illustrated along with some experimental results.

리니어모터 스테이지 진직도 향상을 위한 서보 시스템 개발 (Development of Servo-system for Straightness Improvement of Linear Motor Stage)

  • 강민식;최정덕
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.530-536
    • /
    • 2004
  • In this paper a servo-system is developed to improve straightness of linear motor stages. When a linear motor stage is used for high-precision linear motion systems, high precision straightness accuracy is necessary to meet the required position accuracy. In such cases, machining and assembling cost increases to improve the straightness accuracy. An electro-magnetic actuator which is relatively cost effective than any other conventional servo-systems is suggested to compensate the fixed straightness error. To overcome the compensation error due to the friction, a sliding mode control is applied. The effectiveness of the suggested mechanism and the control performance are illustrated along with some experimental results.

  • PDF

초소형 광디스크 드라이브용 스윙암 방식 로터리 엑츄에이터 설계 및 분석 (Design and Analysis of Swingarm Type Rotary Actuator for Micro ODD)

  • 김동욱;홍어진;박노철;박영필;김수경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.780-785
    • /
    • 2003
  • Recently the trends in information storage devices need small size, mobility, high capacity, and low power consumption etc. To satisfy those, the development of high performance actuator is an important issue. Compared with general linear actuator for optical disk drive, swingarm type rotary actuator is suitable to design in small form factor and has fast access time for random access. Swingarm actuator is designed considering the structural problem and the actuating force of VCM(Voice Coil Motor). The increase of mass caused by optical components makes vibration problems of swing-arm, therefore resonance frequency should be increased and inertia has to be reduced. ANSYS FEM tool is employed in optimizing swingarm. The VCM is designed using 3-D electro-magnetic analysis, and parameters of magnetic circuit are determined to matte large flux density. The large flux density enables to achieve low power consumption. VCM holder is designed to get the mass balance of total actuator and this balance reduces the magnitude of critical mode relative to pivot bearing, It is expected that swingarm type rotary actuator designed by this method is available to variable type of micro optical disk drives.

  • PDF

자기력을 이용한 충격형 액추에이터의 설계 및 성능 평가 (Design and Performance Evaluation of Impact Type Actuator Using Magnetic Force)

  • 민현진;임형준;김병규;김수현
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1438-1445
    • /
    • 2002
  • For robotic endoscope, some researchers suggest pneumatic actuators based on inchworm motion. But, the existing endoscopes have not been replaced completely because human intestine is very sensitive and susceptible to damage. We design and test a new locomotion of robotic endoscope that allows safe maneuverability in the human intestine. The actuating mechanism is composed of two solenoids at each side and a single permanent magnet. When the current direction is reversed, repulsive force and attractive at the opposition side propels permanent magnet. Impact force against robotic endoscope transfers momentum from moving magnet to endoscope capsule. The direction and moving speed of the actuator can be controlled by adjustment of impact force. Modeling and simulation experiments are carried out to predict the performance of the actuator. Simulations show that force profile of permanent magnet is the dominant factor for the characteristic of the actuator. The results of simulations are verified by comparing with the experimental results.