• Title/Summary/Keyword: Electro hydrostatic actuator

Search Result 31, Processing Time 0.029 seconds

Position Control of Dual Redundant Asymmetric Tandem Electro-Hydrostatic Actuator for Aircraft based on Backstepping Technique (백스테핑 기법을 이용한 항공기용 이중화 비대칭형 직렬 전기-정유압 구동기의 위치제어)

  • Kim, Daeyeon;Park, Hyung Jun;Kim, Sang Seok;Kim, Dae Hyun;Kim, Sang Beom;Lee, Junwon;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • The electro-hydrostatic actuators (EHA) are widely used in various industrial fields since they can independently execute the function of the hydraulic power source and have high efficiency. Particularly, in the aviation field, the EHA is mainly designed as dual redundant asymmetric tandem actuator to mitigate failure and minimize installation space. However, aviation EHAs designed in the form of dual redundant asymmetric tandem actuator have the disadvantage of decreased durability performance due to the occurrence of force fighting. In this paper, the controller is designed based on backstepping technique to improve control performance and reduce force fighting for aviation EHA. The augmented state observer is proposed to estimate the states required for control. Through simulation, it was verified that the proposed controller had superior control performance and significantly reduces the force fighting compared to the general PI controller.

Control-performance Improvement of Dual EHAs (이중 EHA의 제어 특성 개선)

  • Lee, Seong Ryeol;Hong, Yeh Sun
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.32-38
    • /
    • 2016
  • For this paper, the position-control performances of dual EHA(electro-hydrostatic actuator) systems were investigated according to two cases wherein the double-rod- and single-rod-type hydraulic cylinders were combined. Since the control performance is significantly dependent on the load conditions including external forces such as the inertia load, it is proposed here that the two sub-EHAs are driven by separate position and force controllers, instead of two identical position controllers. According to the simulation results, the best performance was achieved by the position-controlled single-rod-type EHA that was combined with a force-controlled double-rod-type EHA. As the force-controlled double-rod-type EHA compensated for the external loads on the position-controlled single-rod-type EHA, the position-control performance was not influenced by external forces including the inertia load. In addition, the position-controlled single-rod-type EHA contributed to the enhancement of the damping ratio by absorbing the pressure peaks through its internal accumulator. Due to the symmetrical piston areas, the double-rod-type EHA is more suitable for force control than the single-rod- type EHA.

A Feedback Control of Pump-Controlled Electro-Hydrostatic Actuation System (펌프 가변제어기반 유압시스템의 피드백 제어)

  • Ryu, Jae-Kwan;Seo, Hyung-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.837-843
    • /
    • 2016
  • This paper presents a position control strategy for a pump-controlled electro-hydrostatic actuator (EHA) using feedforward control with disturbance compensation. As the disturbance observer is used to estimate nonlinear dynamics of EHA, which has valve-opening conditionals, as well as external disturbances, an additional feedforward control is adopted to achieve rapid response. The effectiveness of the proposed control strategy is verified through experiment using an EHA test bench. The proposed controller shows better tracking performance compared with a conventional PID controller.

Research to Predict the Thermal Characteristics of Electro Hydrostatic Actuator for Aircraft (항공기용 전기-정유압식 작동기(Dual Redundant Asymmetric Tandem EHA)의 열특성 예측을 위한 연구)

  • Kim, Sang Seok;Park, Hyung Jun;Kim, Daeyeon;Kim, Dae Hyun;Kim, Sang Beom;Lee, Junwon;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.84-92
    • /
    • 2022
  • The electro-hydrostatic actuator (EHA) recently has been used in flight control fields for aircraft because of its benefits of minimizing oil leakage and weight, improving safety, and etc. while independently operating the hydraulic power source and eliminating complex hydraulic piping. The aircraft of which EHA is installed inside, has the thermal management issue of EHA, because of its limited cooling source as compared with the aircraft which installs the traditional central hydraulic system. So, the thermal analysis model which predicts the thermal characteristics of EHA, is required to resolve this thermal management issue. In this study, an oil circulation circuit inside the hydraulic power module comprised of hydraulic pump and electrical motor for EHA was applied. This is for the purpose of developing the internal rotary group of hydraulic power module, which operates under the conditions of high rotation speed and hydraulic pressure. After formulating an appropriate thermal analysis model, the thermal analysis results with oil cooled or no oil cooled hydraulic control module were compared and reviewed, for the purpose of predicting the thermal characteristics of EHA.

The State of the Art and Application of Actuator in Aerospace (항공우주용 구동장치 개발 동향)

  • Yoon, Gi-Jun;Park, Ho-Youl;Jang, Ki-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.89-102
    • /
    • 2010
  • In this paper, a study on the future-oriented actuator introduces the future technology and future direction in aerospace and several industry fields. In particular, the mechanical linkage or hydraulic and pneumatic actuators which have the higher output-to-weight ratio have been used a lot in the past as the aircraft's flight control device. Most recently, Fly-By-Wire system has been used in aircraft and the flight control system has been changed in more electric and all electric systems. Electrohydraulic actuators and electric actuators have been developed continually, because they have better efficiency, safety and lower cost for the flight control system of aircraft. Also, to improve the weight condition, accuracy and response of actuator, new field actuators using new materials have been developed. In this paper we clearly proposed the actuator design and detailed technology development trend for next generation actuation system in aerospace and new field.

A Study on the Hydraulic Vibration Characteristics of the Prefill Check Valve (프리필용 체크밸브의 유압진동 특성에 관한 연구)

  • Park, Jeong Woo;Han, Sung-Min;Lee, Hu Seung;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.8-15
    • /
    • 2021
  • A rear axle steering (RAS) system is attached to the rear of medium and large commercial vehicles that transport large cargo. The existing RAS systems are driven by electro-hydraulic actuator (EHA), and most commercialized EHAs consist of electric motors, hydraulic pumps, relief valves, prefill valves and cylinders. The prefill valve required for such EHAs is a type of check valve with extremely low cracking pressure that should not allow RAS to have noise or vibration, and the prefill valve prevents system negative pressure as well as unstable operation. Most papers on this topic rely on experiments to predict valve performance, and theoretically detailed modeling of valves or pipelines is performed, but it is very rare to evaluate hydraulic vibration characteristics by analysing everything from hydraulic pumps to valves comprehensively. In this study, we proposed an experimental circuit that can predict the performance of the prefill valve. The study also analysed the pressure-flow pulsation that is transmitted to the valve through the pipeline, and how the transmitted pressure-flow pulsation affects the valve vibration.

Start and Stop Characteristics of Single-Rod Electro-Hydrostatic Actuator (전동기 일체형 편로드 유압액추에이터의 기동 및 정지특성해석)

  • Jung, Gyu-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1483-1490
    • /
    • 2011
  • Electro-hydrostatic actuators(EHAs), which are usually composed of a direct motor-driven hydraulic pump and a cylinder, have been widely adopted as aircraft actuation systems because of their benefits in terms of improved efficiency, weight savings and the fact that they use a standalone power source. Since the recent trend in construction vehicles has been focus on energy savings in their hydraulic systems, EHAs are expected to be potential substitutes for conventional power transmission, since they are capable of energy recovery as well as highly efficient pump control. In this paper, the start and stop characteristics of EHAs were investigated through cracking pressure analysis of the pilot-operated check valve(PCV), which enables the cylinder to standstill against an external load with no holding effort from the hydraulic pump. A mathematical model that includes the load dynamics and the EHA's internal hydraulic circuit was derived for simulation with the MATLAB Simulink package. This model verified the PCV's opening and closing sequence, which in turn affects the EHA's start and stop characteristics.

Improvement of the Low-Speed Friction Characteristics of a Hydraulic Piston Pump by PVD-Coating of TiN

  • Hong Yeh-Sun;Lee Sang-Yul;Kim Sung-Hun;Lim Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.358-365
    • /
    • 2006
  • The hydraulic pump of an Electro-hydrostatic Actuator should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil through low-speed operation so that the steady state position control error of the actuator can be accurately compensated. Within the scope of axial piston type hydraulic pumps, this paper is focused on the investigation how the surface treatment of their cylinder barrel with TiN plasma coating can contribute to the reduction of the friction and wear rate of valve plate in the low-speed range with mixed lubrication. The results showed that the friction torque of the valve plate mated with a TiN coated cylinder barrel could be reduced to 22% of that with an uncoated original one when load pressure was 300 bar and rotational speed 100 rpm. It means that the torque efficiency of the test pump was expected to increase more than 1.3% under the same working condition. At the same time, the wear rate of the valve plate could be reduced to $40\sim50%$.

A Study on Sliding Mode Control of EHA System for Robust Control (견실한 추종 제어를 위한 EHA 시스템의 슬라이딩 모드제어에 관한 연구)

  • Park, Yong-Ho;Park, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2009
  • The response characteristics of EHA systems are sensitive to the temperature change of working fluid because the temperature of working fluid causes the variation of system parameters such as effective bulk modulus and viscous friction coefficient. In this paper, a precise position control of EHA system using the adaptive sliding mode control system is suggested. The adapted system parameters such as effective bulk modulus and viscous friction coefficient can be used for monitoring failures in the EHA system which has potential applications in the industrial fields. Not only the accuracy of adapted system parameters but also the improved performance and robustness in a given reference position of the cylinder are verified by computer simulation using AMESim software.

Improvement of the Low-speed Friction Characteristics of a Bent-Axis Type Hydraulic Piston Pump (사축식 유압 피스톤 펌프의 저속 마찰 특성 개선)

  • Hong Yeh-Sun;Lee Sang-Yul;Kim Chi-Bung;Kim Sung-Hoon;Rhim Hyeon-Sik;Kim Sung-Dae
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.3
    • /
    • pp.7-13
    • /
    • 2004
  • The hydraulic pump for a Electro-hydrostatic Actuator for aircrafts should be able to quickly feed large volume of oil into hydraulic cylinder in order to reduce the response time. On the other hand, it should be also able to precisely dispense small amount of oil by low-speed operation so that the steady state position control error of the EHA can be accurately compensated. This paper is focused on the investigation how the plasma coating surface treatment of cylinder barrel with CrSiN can contribute to the reduction of low-speed friction torque of a bent-axis type piston pump. The results showed that the reduction of the friction torque was not remarkable, but that the anti-wear characteristics of the CrSiN-coated cylinder barrel were much better that those of the original one.

  • PDF