• 제목/요약/키워드: Electro discharge Machining (EDM)

검색결과 43건 처리시간 0.025초

NaOH 수용액에 있어서 전기화화적 방전가공법에 의한 유리기판의 미세가공 (Microdrilling of Glass Substrates by Electrochmical Discarge Machining in NaOH Solutions)

  • 홍석우;제우성;최영규;정귀상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1500-1502
    • /
    • 1998
  • Electro Discharge Machining (EDM) is a so-call nonconventional machining technique. This paper presents the experimental results of an EDM technique for the fabircation of microholes on #7440 pyrex glass substrates. With various applied voltages and various concentration of NaOH or KOH solution, the glass substrates have been microdrilled using the copper electrodes of which diameters are 250 ${\mu}m$ to 450 ${\mu}m$. The machined throughholes have been observed the top diameter, the bottom diameter and machining time have been measured. EDM in NaOH solution causes the fabrication to have better the surface condition, higher selective of electrode, lower concentration of solution with respect to EDM in KOH solution machined fabrication.

  • PDF

NaOH 수용액을 이용한 전기화학적 방전가공법에 의한 유리기판의 미세가공 (Microdrilling of Glass Substrates by Electrochemical Discharge Machining in NaOH Solution)

  • 홍석우;정귀상;최영규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.427-430
    • /
    • 1998
  • Electro Discharge Machining (EDM) is a so-call non-conventional machining technique. This paper presents the experimental results of an EDM technique for the fabrication of microholes on #7440 pyrex glass substrates. With various applied voltages and at various concentration of NaOH solution, the glass substrates have been microdrilled using the copper electrodes of which diameters are 250 $\mu\textrm{m}$ to 450 $\mu\textrm{m}$. The machined throughholes have been observed the top diameter, the bottom diameter and machining time have been measured. The experimental results show that the machining time decreases as the concentration of NaOH solution increases, the applied voltage increases and the needle diameter decreases. Also, the top diameter increases as the needle diameter increases or the applied voltage increases. The bottom diameter decreases as the needle diameter decreases or the applied voltage decreases.

  • PDF

전기화학적 방전법에 의한 유리기판의 미세가공 (Microdrilling of Glass Substrates by Electrochemical Discharge Machining)

  • 홍석우;최영규;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.393-396
    • /
    • 1997
  • Electro Discharge Machining (EDM) is a so-call non-conventional machining technique. This paper presents the experimental results of an EDM technique for the fabircation of microholes on #7440 pyrex glans. With various applied voltages and at various concentration of KOH solution, the glass substrate have been microdrilled using the copper electrodes of which diameters are 250$\mu\textrm{m}$ to 450$\mu\textrm{m}$, respectively. The machined throughholes have been observed the top diameter, the bottom diameter, hollow width and hole diameter of the hole, and machining time hale been measured. The experimental results show that the machining time decreases as the concentration of KOH solution increases or the applied voltage increase. Also, The top diameter increases as the concentration of KOH solution decreases or the allied voltage increases. The bottom and hollow width decreases as the of KOH solution increases or the applied voltage decreases.

  • PDF

치과용 주조 합금의 방전가공에 따른 표면 성분 변화 (Elemental alteration of the surface of dental casting alloys induced by electro discharge machining)

  • 장용철;이명곤
    • 대한치과기공학회지
    • /
    • 제31권1호
    • /
    • pp.55-61
    • /
    • 2009
  • Passive fitting of meso-structure and super-structures is a predominant requirement for the longevity and clinical success of osseointegrated dental implants. However, precision and passive fitting has been unpredictable with conventional methods of casting as well as for corrective techniques. Alternative to conventional techniques, electro discharge machining(EDM) is an advanced method introduced to dental technology to improve the passive fitting of implant prosthesis. In this technique material is removed by melting and vaporization in electric sparks. Regarding the efficacy of EDM, the application of this technique induces severe surface morphological and elemental alterations due to the high temperatures developed during machining, which vary between $10,000{\sim}20,000^{\circ}C$. The aim of this study was to investigate the morphological and elemental alterations induced by EDM process of casting dental gold alloy and non-precious alloy used for the production of implant-supported prosthesis. A conventional clinical dental casting alloys were used for experimental specimens patterns, which were divided in three groups, high fineness gold alloy(Au 75%, HG group), low fineness gold alloy(Au 55%, LG group) and nonprecious metal alloy(Ni-Cr, NP group). The UCLA type plastic abutment patterns were invested with conventional investment material and were cast in a centrifugal casting machine. Castings were sandblasted with $50{\mu}m\;Al_2O_3$. One casting specimen of each group was polished by conventional finishing(HGCON, LGCON, NPCON) and one specimen of each group was subjected to EDM in a system using Cu electrodes, kerosene as dielectric fluid in 10 min for gold alloy and 20 min for Ni-Cr alloy(HGEDM. LGEDM, NOEDM). The surface morphology of all specimens was studied under an energy dispersive X-ray spectrometer (EDS). The quantitative results from EDS analysis are presented on the HGEDM and LGEDM specimens a significant increase in C and Cu concentrations was found after EDM finishing. The different result was documented for C on the NPEDM with a significant uptake of O after EDM finishing, whereas Al, Si showed a significant decrease in their concentrations. EDS analysis showed a serious uptake of C and Cu after the EDM procedure in the alloys studied. The C uptake after the EDM process is a common finding and it is attributed to the decomposition of the dielectric fluid in the plasma column, probably due to the development of extremely high temperatures. The Cu uptake is readily explained from the decomposition of Cu electrodes, something which is also a common finding after the EDM procedure. However, all the aforementioned mechanisms require further research. The clinical implication of these findings is related with the biological and corrosion resistance of surfaces prepared by the EDM process.

  • PDF

역설계를 이용한 신발 밑창 금형의 직접 가공 (Direct Machining for Outs ole Mold of Shoes Using Reverse Engineering)

  • 염정노;박용복
    • 한국CDE학회논문집
    • /
    • 제8권3호
    • /
    • pp.167-174
    • /
    • 2003
  • The outsole mold of the shoes has been manufactured using electro-discharge machining by graphite electrode or using casting etc. The study is concerned with the measurement of the mold of the shoes in use, the modeling by CAD/CAM system, the generation of NC data and the machining by CNC machining center. The machining has been performed from the data type obtained from 3-dimensional measurement points of mold in use. The ball end mill and the engraving cutter is used as cutter and the cutting conditions are adjusted according to the shapes and sizes of the cutter and part in cutting. The method has proposed the possibility for higher productivity and quality on mold-manufacturing of shoes outsole.

재료변화에 따른 Micro-EDM에서의 가공성에 관한 연구 (A Study on the Machinability of the Micro-EDM Depending on the Materials)

  • 이상국;김태현;홍민성
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.658-665
    • /
    • 2012
  • Micro-EDM is widely used in metallic pattern, electronics, nuclear power and industry in the form of precision process. The improvement of Electro Discharge Machining has been on a steady progress since $19^{th}$ century. The technology has overcome the limits of the traditional precision process, enabling micro-EDM, micro electrolytic machining, micro drilling, micro punching and laser beam machining, which create versatile products with smaller sizes. What have been known about the major feature of Micro-EDM is high thermal energy so that their products are free from the hardness of their products as long as they are electrical conductor. However, each metal is suspected to have different features and natures even if they are created through the same procedure. In this thesis, the methodology of Micro-EDM and how to categorize them are explained. Also, the nature of the examined materials with surface shape and surface roughnes are analyzed. The results of the experiments are expected to understand surface roughness and workability of other materials for Micro-EDM.

미세구멍의 방전가공에 관한 연구 (A Study on Micro-Hole Drilling by EDM)

  • 윤재웅;양민양
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1147-1154
    • /
    • 1990
  • 본 연구에서는 초음파 화학 가공(ultrasonicassisted chemical mahining)을 이용하여 100$\mu\textrm{m}$이하의 전극봉을 제작하였고 제작한 전극을 이용하여 미세구멍을 방전 가공함으로써 가공특성을 파악하고, 방전액을 각각 등유(kerosene)와 물로하여 구멍의 표면을 비교, 분석하였으며 전극의 지름, 가공물의 두께에 대한 오버컷과 경사도(tap- er) 그리고 전극의 마멸을 조사하였다.

가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발 (Development of Ultrasonic Machine with Force Controlled Position Servo System)

  • 장인배;이승범;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

전기전도성 이방성 복합재료 방전가공의 수치모사 (Numerical Simulation of the Electro-discharge Machining Process of a Conductive Anisotropic Composite)

  • 안영철;천갑재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.709-712
    • /
    • 2002
  • For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin's finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately the temperature distribution and the shape of the crater were shifted in the same direction respectively and the material removal rate was found to be higher in the case of increasing radial conductivity rather than the axial conductivity.

  • PDF

황동과 금형강의 와이어 컷 방전가공을 통한 가공특성 평가 (Evaluation of Machining Characteristics through Wire-Cut EDM of Brass and SKD 11)

  • 김정석
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.130-137
    • /
    • 1997
  • The demand for wire-cut EDM is increasing rapidly in the die and tool making industry. In this study machining characteristics such as machining rate, surface roughness, hand drum form and hardness of machined material are investigated experimentally under the conditions varing pulse on time, pulse off time, peak voltage, wire tension after fixing other conditions in SKD 11 and brass and brass workpiece. It was found that various operating conditions had significant influences on machining characteristics. But the hardness of workpiece was uneffected by operating conditions. Also it was obtained experimentally that brass workpeice had better machinability than SKD 11 one.dition according to the current(Ip) in an electric spark machine : 1) Electrode is utilized Cu and Graphite. 2) Work piece is used the material of carbon steel. The condition of experiment is : 1) Current is varied 0.7(A) to 50(A) and the time of electric discharging to work piece in each time is 30(min) to 60(min). 2) After the upper side of work piece was measured in radius(5$\mu$m) of stylus analyzed the surface roughness to ade the table and graph of Rmax by yielding data. 3) Electro wear ratio is : \circled1Cooper was measured ex-machining and post-machining by the electronic balance. \circled2The ex-machining of graphite measured by it, the post-machining was found the data from volume $\times$specific gravity and analyzed to made its table and graph on ground the data. 4) In order to keep the accuracy of voltage affected to the work piece was equipped with the A.V. R and the memory scope was sticked to the electric spark machine. 5) In order to preserve the precision of current, to get rid of the noise occured by internal resistance of electric spark machine and to force injecting for the discharge fluid , it made the fixed table for a work piece to minimize the work error by means of one's failure during the electric discharging.

  • PDF