• Title/Summary/Keyword: Electro chemical discharge (ECD)

Search Result 1, Processing Time 0.053 seconds

The Scattering Beam Measurement of the RBC and the Fabrication of the Micro Cell Biochip (적혈구의 산란빔 측정과 마이크로 세포 분석 바이오칩 제작)

  • Byun, In Soo;Kwon, Ki Jin;Lee, Joon Ha
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.116-121
    • /
    • 2014
  • Next future, The bio technology will be a rapidly developing. This paper is the scattering beam measurement of the red blood cell (RBC) and the fabrication of the micro cell biochip using the bio micro electro mechanical system (Bio-MEMS) process technology. The Major process method of Bio-MEMS technology was used the buffered oxide etchant (BOE), electro chemical discharge (ECD) and ultraviolet sensitive adhesives (UVSA). All experiments were the 10 times according to the process conditions. The experiment and research are required the ultraviolet expose, the micro fluid current, the cell control and the measurement of the output voltage Vpp (peak to peak) waveform by scattering angles. The transmitting and receiving of the laser beam was used the single mode optical fiber. The principles of the optical properties are as follows. The red blood cells were injected into the micro channel. The single mode optical fiber was inserting in the guide channel. The He-Ne laser beam was focusing in the single mode optical fiber. The transmission He-Ne laser beam is irradiating to the red blood cells. The manufactured guide channel consists of the four inputs and the four outputs. The red blood cell was allowed with the cylinder pump. The output voltage Vpp waveform of the scattering beam was measured with a photo detector. The receiving angle of the output optical fiber is $0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The magnitude of the output voltage Vpp waveform was measured in the decrease according to increase of the reception angles. The difference of the output voltage Vpp waveform is due differences of the light transmittance of the red blood cells.