• Title/Summary/Keyword: Electro Magnet

Search Result 142, Processing Time 0.022 seconds

The Design of Permanent Magnet for Improved Capability of Starting and Synchronizing of Single Phase Line Start Permanent Magnet Motor (단상 LSPM의 기동 및 동기화 능력 향상을 위한 영구자석 설계)

  • Hong, S.H.;Kwon, B.I.;Kim, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.660-662
    • /
    • 2002
  • The single phase line start permanent magnet motor has high efficiency and power factor when it operates synchronous speed. The rotor structure is composed of permanent magnet and cage bars. The motor is accelerated by rotor bars and synchronized by magnet and rotor saliency. but starting torque is disturbed by magnet braking torque so, to obtain good starting performance and synchronizing capability. the design of proper permanent magnet is required. This paper is represented performance of start ing and synchronizing by changing permanent magnet thickness

  • PDF

Design and Characteristic Analysis of Hybrid-Type Levitation and Propulsion Device for High-Speed Maglev Vehicle (초고속 자기부상열차를 위한 하이브리드형 부상 추진 시스템의 설계 및 특성해석)

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min;Kim, Bong-Sup;Kim, Dong-Sung;Lee, Young-Sin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.715-721
    • /
    • 2010
  • This paper deals with the design and characteristic analysis of electro-magnet/permanent-magnet (EM-PM) hybrid levitation and propulsion device for high-speed magnetically levitated (maglev) vehicle. The machine requires PMs with high coercive force in order to levitate the vehicle by only PMs, and propulsion force is supplied by long-stator linear synchronous motor (LSM). The advantages of this configuration are an increasing levitation airgap length and decreasing total weight of the vehicle, because of the zero-power levitation control. Several design considerations such as machine structure, manufacturing, and control strategy are described. Moreover, the levitation and propulsion device for high-speed maglev vehicle has been designed and analyzed usign the electromagnetic circuit and FE analysis. In order to verify the design scheme and feasibility of maglev application, 3-DOF static force test set is implemented and tested. The obtained experimental data using the static tester shows the validity of the design and analysis approaches.

An Experimental Study on Magnet for Electro-Magnetic Maglev Vehicle( IV ) (상전도 흡인식 자기부상열차용 전자석에 대한 실험적 연구( IV ))

  • Kim, Bong-Seop;Chung, Hyun-Kap;Yoo, Mun-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.67-73
    • /
    • 1997
  • A magnet for urban transit Maglev is designed, analyzed and experimented to evaluate and to improve its characteristic. FEM is also used to calculate magnetic field density, magnetic force, leakage flux and losses. Seven cases of magnets are analyzed and tested for verifying the calculated characteristics and for optimizing the shape. Using the results, an improved levitation magnet is proposed for the vehicle.

  • PDF

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.

An Analysis of Magnet Unit of Electro-Pneumtic Control Valve Positioner (전공식 콘트롤 밸브 Positioner 용 Magnet Unit의 해석)

  • 김성재;김지원;조순철;정선태;유형근;전찬구;고택범
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.321-326
    • /
    • 1997
  • We analyzed an important part of control valve, magnet unit, which is used to control the fluid. Magnetic circuit which is composed of magnet and yoke is analyzed using finite element method. Then, flux density and coil force were calculated and compared with those of measured. According to the simulation results, the gap field, force constant, and permeance coefficient were 3~5 kG, 27.5 N/A, 22.1, respectively, which corresponded reasonably well with the measured values. We also obtained reluctance factor of 1.1 and fringing factor of 1.4 by simulation.

  • PDF

Reduction of Electromagnetic Torque Ripple in High-Speed, High-Load Brushless DC Motors used for Automobile Parts (자동차 부품용 고속, 고부하 BLDC 모터내의 전자기적 토크 맥동 저감)

  • 황상문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.39-46
    • /
    • 1998
  • For permanent magnet brushless DC motors used for high speed fuel pumps, torque ripple is an important origin of vibration, acoustic noise and speed fluctuation. In this paper, the output torque profile of a PM motor with one phase energized is decomposed into the commutation torque, the reluctance torque and the armature reaction torque according to their source origins. It verifies that the output torque profile is qualitatively equivalent to the BEMF profile for low reluctance motors. This paper discusses the effect of magnet pole shaping and magnet arc length on the output torque and torque ripple. A magnet edge shaping is proposed to design a trapezoidal BEMF motor without torque ripple, with minimal sacrifice of the maximum output torque.

  • PDF

Development of a Conduction-Cooled Superconducting Magnet System for Material Separation (물질분리를 위한 전도냉각형 초전도자석 시스템 개발)

  • Choi, Y.S.;Kim, D.L.;Lee, B.S.;Yang, H.S.;Jung, W.M.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.50-54
    • /
    • 2008
  • A conduction-cooled superconducting magnet system is developed for material separation. The superconducting magnet for material separation has to be designed to have a strong magnetic field in a control volume. Since the magnetic field gradient is larger at the end rather than at the center of the magnet, we developed a design method to optimize the superconducting magnet for material separation. The safety of the superconducting magnet is evaluated, taking into account the electro-magnetic field, heat and structure. The superconducting coil is successfully wound by the wet-winding method. The superconducting coil is installed in a cryostat maintaining high vacuum, and cooled down to approximately 4 K by a two-stage GM cryocooler. The performance of the conduction-cooled superconducting magnet system is discussed with respect to the supplied current, cooling medium and cooling power of a cryocooler.

  • PDF

Replication of Automotive Vibration Target Signal Using Iterative Learning Control and Stewart Platform with Halbach Magnet Array (반복학습제어와 할바흐 자석 배열 스튜어트 플랫폼을 이용한 차량 진동 신호 재현)

  • Ko, Byeongsik;Kang, SooYoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.438-444
    • /
    • 2013
  • This paper presents the replication of a desired vibration response by iterative learning control (ILC) system for a vibration motion replication actuator. The vibration motion replication actuator has parameter uncertainties including system nonlinearity and joint nonlinearity. Vehicle manufacturers worldwide are increasingly relying on road simulation facilities that put simulated loads and stresses on vehicles and subassemblies in order to reduce development time. Road simulation algorithm is the key point of developing road simulation system. With the rapid progress of digital signal processing technology, more complex control algorithms including iterative learning control can be utilized. In this paper, ILC algorithm was utilized to produce simultaneously the six channels of desired responses using the Stewart platform composed of six linear electro-magnetic actuators with Halbach magnet array. The convergence rate and accuracy showed reasonable results to meet the requirement. It shows that the algorithm is acceptable to replicate multi-channel vibration responses.

Design, Manufacture and Performance Characteristics under Each Mode of High-Speed Motor/Generator for Electro-Mechanical Battery System (전기기계식 배터리 시스템용 초고속 전동발전기의 설계, 제작 및 모드별 특성)

  • Jang, Seok-Myeong;Seo, Jin-Ho;Jeong, Sang-Seop;Choe, Sang-Gyu;Ham, Sang-Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.400-407
    • /
    • 1999
  • This paper treated the design, manufacture and the performance characteristics under each mode of high speed motor/generator for an electro-mechanical battery(EMB). This machine is employed as an integral part of a flywheel energy storage system(FESS), i.e., a modular flywheel system to be used as a device for storing electrical or mechanical energy. In this machine, the magnetic field system is constructed by using special magnet array, dipole Halbach array with 16 permanent magnet segments and the armature is composed of a plastic bobbin and multi-phase windings with Litz wire. The magnet array produces a highly uniform dipole field without back iron. The motor/generator is 3-phase machine in which the dipole Halbach array surrounding the winding is rotating. Since there are no iron laminations, this field system offers some unique advantages for the simplicity of the design and the theoretical prediction of characteristics of a high speed electric machine. This paper describes the results obtained when EMB system was tested in the laboratory.

  • PDF

Characteristic Analysis and Experimental Verification of the Axially Asymmetric Structured Outer-Rotor Type Permanent Magnet Motor

  • Seo, Myung-Ki;Lee, Tae-Yong;Park, Kyungsoo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.898-904
    • /
    • 2016
  • In this study, we have dealt with a design characteristic of outer-rotor type permanent magnet (PM) motor applied for Engine Cooling Fan (ECF). When we design a motor with structure like this type, it is required as a requisite to consider 3-Dimensional (3-D) effect by implementing a non-linear Finite Element Analysis (FEA) due to a yoke-ceiling, which is perpendicular to the axis of rotation. We have analyzed identical models under three different conditions. The analysis has been performed through a non-linear 2-Dimensional (2-D) and 3-D FEA. Finally, the results have been compared with Back Electro-Motive Force (BEMF) value of actual motor model. As a result, a yoke-ceiling function as an additional flux path and the operating point on B-H curve of rotor material is shifted to non-saturation region relatively. Accordingly, magnetic flux linkage can be increased and motor size can be decreased under same input condition to satisfy ECF specification, such as torque.