• Title/Summary/Keyword: Electricity performance

Search Result 734, Processing Time 0.023 seconds

IEEE 802.11s based Wireless Mesh Networks for Smart Grid (스마트 그리드를 위한 IEEE 802.11s 기반 무선 메쉬 네트워크)

  • Jung, Ji-Sun;Kim, Jae-Beom;Ko, Young-Bae;Lee, Sang-Youm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1390-1398
    • /
    • 2010
  • We present the concept of applying Wireless Mesh Networking (WMN) technology into Smart Grid, which is recently rising as a potential technology in various areas thanks to its advantages such as low installation costs, high scalability, and high flexibility. Smart Grid is an intelligent, next-generation electrical power network that can maximize energy efficiency by monitoring utility information in real-time and controlling the flow of electricity with IT communications technology converged to the existing power grid. WMNs must be designed for Smart Grid communication systems considering not only the high level of reliability, QoS support and mass-data treatment but also the properties of the traditional power grid. In addition, it is essential to design techniques based on international standards to support interoperability and scalability. In this paper, we evaluate the performance of IEEE 802.11s based Smart Grid Mesh Networks by conducting preliminary simulation studies with the ns-3 simulator. We also outline some challenging issues that should be reviewed when considering WMNs as the candidate for Smart Grid communication infrastructure.

The Photovoltaic LED Lighting System applying Lithium Polymer Batteries (리튬 폴리머 전지를 이용한 태양광 LED 조명시스템)

  • Ahn, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.109-115
    • /
    • 2014
  • The research on solar energy that we get from nature to cope with energy exhaustion is a very significant and inevitable task for us to do. Along with this, lately, in Korea, as part of new growth engine industry regarding low-carbon green growth, we have selected the LED(Light Emitting Diode) as low power consuming, eco-friendly lighting equipment and have been facilitating research and development on it and creating a variety of new industries utilizing it. What was developed here in this research was the photovoltaic LED lighting system applying lithium polymer batteries equipped with the excellent performance of lithium ion batteries as well as significantly low explosive hazard. Its photovoltaic panel was made to have 100W capacity, and for its power supply system, functional convenience was considered so that it could be equipped with both DC and AC power to be used as household electricity in a variety of ways.

A Study on Evaluation of Power Management IC (전원모듈 PMIC 특성평가에 관한 연구)

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.260-264
    • /
    • 2016
  • The MAX77846, which is compatible with MAX77826, is a sub-power management IC (PMIC) for the latest Wearable Watch and 3G/4G smart phones. The MAX77846 contains N-MOSFET (N channel Metal-Oxide Semiconductor Field-Effect Transistor), a high-efficiency regulator, and comparator, etc to power up peripherals. The MAX77846 also provides power on/off control logic for complete flexibility and an $I^2C$ (Inter Integrated Circuit) serial interface to program individual regulator output voltages. In this paper, the simplified power macro-model based on MAX77846 is designed to verify the performance of the battery voltage in terms of current and time, and simulated by using of the LTspice. In addition, it is verified how much time can the charged battery capacity for Samsung Galaxy Gear 2 be used to operate a specified function after measuring the currents flowing to carry out the main functions in real time, which will be applicable to design parameters for the advanced power module

An Analysis of Junior High School Students' Open Investigation into Electricity and Magnetism in Two Kinds of Tasks: Qualitative and Quantitative (전기와 자기에 대한 중학생들의 개방적 탐구에서 과제 유형에 따른 탐구 수행 분석)

  • Hwang, Sung-Won;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.2
    • /
    • pp.255-263
    • /
    • 2001
  • The purpose of this study is to analyse the eighth grade students' performance of open investigations for two kinds of tasks: the qualitative one which involves the descriptive approach through observation, and the quantitative one which involves the quantitative data processing through control of variables. Researcher's observation, interview data as well as students' investigation reports, self-evaluations were analysed. The difficulties of qualitative open investigation lie in detecting and dealing with unexpected observations, of which the acceptance and interpretation were influenced by preconceptions. On the other hand, managing several variables, making reliable and valid measures, and quantitative data processing constituted main difficulties of quantitative open investigation. Some students could recognize the deficiencies of their methods and findings in qualitative one, but few in quantitative one. These results suggest the teaching point for each task of open investigations.

  • PDF

A Study on the Oil-mist/Smoke Collecting Module for the Pure Energy Recycling (청정에너지 회수용 유증기/매연 포집모듈에 관한 연구)

  • Kim, Myung-Soo;Ohkura, Shigenobu;Ham, Koung-Chun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.279-284
    • /
    • 2009
  • Traditionally, so-called "industrial waste gases", such ad exhaust from boilers at industrial installations and a large quantity of soot discharged from power station, before their release into the atmosphere, have been on occasion subjected to an air cleaning process to remove fine particles that may pollute the atmosphere (such as mist and dust containing various powdery or oily substances and moisture from industrial waste gases). The release of industrial waste gases containing these particles directly into the atmosphere poses a serious threat to the earth environment; and recovery of these noxious substances is required by law in some countries and local governments. in urban areas, air pollution from automobile exhaust and others creates a serious condition. Some homes are equipped with and use indoor air purifiers. In many of the kitchens of restaurants, smoke generated during cooking and otherwise contaminated air are cleansed by air purifiers before being released outside or recycled inside. For the dust collecting devices to recover the fine particles contained in contaminated air, the cause for air pollution and how to purify air, many types based on various principles are known. Specifically, classified based on theories of particle collection, filtration, gravity, inertia, centrifugation, electricity, and cleaning types are cited as available processes. Among them, an appropriate type is selected according to the size or type of fine particles to be collected and conditions for installation. For the efficiency of dust collection, a filtration system (by using bag filters and others) and electric system are particularly outstanding and are therefore used widely in various areas of industry. In this research, rotary type high performance oil mist and smoke collecting system with self auto cleaning device equipped with the cleaning fluid spraying section is investigated.

  • PDF

Electrochemical Characteristics of Electrolyte Membrane for Hydrogen Production in High Temperature Electrolysis (고온 수증기 전해 수소제조를 위한 전해질 막의 전기화학적 특성 고찰)

  • Choi Ho-Sang;Son Hyo-Seok;Sim Kyu-Sung;Hwang Gab-Jin
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.349-354
    • /
    • 2005
  • YSZ (yttria-stabilized zirconia) determined with an electrolyte that analyzed thermal stability along sintering condition and an electric characteristic. As sintering temperature increases by SEM, grain grows and it showed that pore decreases relatively. and confirmed effect by grain size. It evaluated that particle internal resistance and electric performance by resistance in an electrolyte and electricity conductivity measurement through ac impedance measurement in temperature of $800\~1000^{\circ}C$ in 2-probe method In order to recognize an electric characteristic. In dry process and wet process, density was each 6.13, 6.25 $g/cm^3$ and the relative density was each 98, 99$\%$ when sintering condition is $1400^{\circ}C$.

Techno-Economic Study on Non-Capture CO2 Utilization Technology

  • Lee, Ji Hyun;Lee, Dong Woog;Kwak, No-Sang;Lee, Jung Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.109-113
    • /
    • 2016
  • Techno-economic evaluation of Non-Capture $CO_2$ Utilization (NCCU) technology for the production of high-value-added products using greenhouse gas ($CO_2$) was performed. The general scheme of NCCU process is composed of $CO_2$ carbonation and brine electrolysis process. Through a carbonation reaction with sodium hydroxide that is generated from brine electrolysis and $CO_2$ of the flue gas, it is possible to get high-value-added products such as sodium bicarbonate, sodium hydroxide, hydrogen & chloride and also to reduce the $CO_2$ emission simultaneously. For the techno-economic study on NCCU technology, continuous operation of bench-scale facility which could treat $2kgCO_2/day$ was performed. and based on the key performance data evaluated, the economic evaluation analysis targeted on the commercial chemical plant, which could treat 6 tons $CO_2$ per day, was performed using the net present value (NPV) metrics. The results showed that the net profit obtained during the whole plant operation was about 7,890 mKRW (million Korean Won) on NPV metrics and annual $CO_2$ reduction was estimated as about $2,000tCO_2$. Also it was found that the energy consumption of brine electrolysis is one of the key factors which affect the plant operation cost (ex. electricity consumption) and the net profit of the plant. Based on these results, it could be deduced that NCCU technology of this study could be one of the cost-effective $CO_2$ utilization technology options.

A Study on the Decision Process for Adoption of Enterprise Endpoint Security solutions (기업용 Endpoint 보안솔루션 도입을 위한 의사결정 프로세스에 대한 연구)

  • Moon, Heoungkeun;Roh, Yonghun;Park, Sungsik
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.2
    • /
    • pp.143-155
    • /
    • 2014
  • In recent years, domestic electronics, banking, electricity, services, manufacturing, pharmaceutical, corporate type and malicious hackers is corporate security through the accident occurred and the resulting loss of corporate information and the damage each year is steadily increasing. Many companies have responded to domestic business activities and to protect critical information related to laptops, smart phones, tablets, and introduced a variety of Endpoint security solutions within. However, being introduced to senselessly Endpoint security solution across the over-budget, with the same features and performance, such as conflicts and problems arise, resulting in additional maintenance costs, in an effort to resolve the conflict in the operational security of the IT department's new difficulty in becoming. Here is the introduction and operation of these Endpoint security solutions in order to solve the problem on employees's PC into the center of the information security governance based on Endpoint security solution to provide the process for determining the solutions presented.

A Study on Development of Large-capacity Aluminum Heat Sinks Brazed with a Batch Furnace (대용량 알루미늄 브레이징 히트싱크 개발에 관한 연구)

  • Lee, Young-Lim;Hwang, Soon-Ho;Jeon, Euy-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1459-1464
    • /
    • 2009
  • Recently demand for large-capacity aluminum heat sinks has been increased as market for high power electricity expands and high-performance electronic products develop. While the brazed heat sinks are in particular preferred, it is almost impossible to manufacture them with an atmospheric continuous furnace due to insufficient heating rate and various thickness of the parent metals. Therefore, a new index batch furnace is developed and the process variables are optimized. Then, brazing efficiency and tensile stress are obtained for brazed parts of the heat sinks. Finally experiment as well as numerical analysis has been performed to compare thermal efficiency of the brazed heat sinks with that of the silicone-bonded heat sinks.

Development of Simulation Model for Waste Heat Recovery from Automotive Engine Exhaust Using Thermoelectric Generator (열전소자를 이용한 자동차 엔진 배기 폐열 회수 시스템 해석 모델 개발)

  • Kim, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1022-1026
    • /
    • 2013
  • Recently, the waste heat recovery technique using thermoelectric generator (TEG) in automotive engine has emerged to improve thermal efficiency in commercial vehicle. It is not difficult to recognize the numerous attempts that have been made to develop the TEG simulation model, but it is hard to find the model in conjunction with a particular heat engine system. In this study, 1-D commercial software AMESim was used to develop a computational model that can assess waste heat recovery from a diesel engine exhaust using TEG. The developed TEG simulation model can be used for evaluating the TEG performance of various types of TE module, and the diesel engine model can simulate any type of on and off-road diesel engines. The simulation results demonstrated that approximately 544.75W could be recovered from the engine exhaust and 40.4W could be directly converted into electricity using one TE module. The models developed in this study can be easily coupled with each other in the same computational program; thus, the models are expected to provide a viable tool for developing and optimizing a TEG waste heat recovery system in an automotive diesel engine.