• Title/Summary/Keyword: Electricity generation

Search Result 1,048, Processing Time 0.029 seconds

Effects of the Damping Ratios of Power Generators on Power Efficiency of an Ocean Renewable Energy Converter Utilizing Flow Induced Vibrations of Two Circular Cylinders (두 원형실린더의 유동유발진동 현상을 이용하는 해양신재생에너지 변환기의 발전 효율에 발전기의 감쇠비가 미치는 영향에 관한 연구)

  • Kim, Eun Soo;Park, Hongrae;Kim, Dong Hwi;Baek, Hyung-min;Bernitsas, Michael M.
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.31-40
    • /
    • 2020
  • Most countries in the world are trying to reduce the use of fossil fuels in the production of electricity and replace them with renewable energy technologies. In Korea, there are abundant ocean renewable energy sources that will play an important role in power generation in the future. This paper introduces a new tidal energy converter utilizing flow induced vibration (FIV), which can work efficiently, even in the currents slower than 1.0m/s. All tests were conducted at the Marine Renewable Energy Laboratory at the University of Michigan to examine the effects of the damping ratio of the electric generators on the power outputs and power efficiencies. In these tests, two identical circular cylinders were used, and passive turbulence controllers were applied to the surface of the cylinders to enhance the FIV. The experimental results showed that by using the two cylinders in the FIV, the power output and efficiency reached up to 31 W and 36%, respectively. In particular, the results showed that the power efficiency was higher at the relatively low flow speed (4

Comparison of Electricity Generation Efficiencies depending on the Reactor Configurations in Microbial Fuel Cells (미생물 연료 전지의 반응조 형상에 따른 전기 생산효율 비교)

  • Lee, Yunhee;Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.681-686
    • /
    • 2010
  • Two different MFC designs were evaluated in batch mode: single compartment combined membrane-electrodes (SCME) design and twin-compartment brush-type anode electrodes (TBE) design (single chamber with two air cathodes and brush anodes at each side of the reactor). In SCME MFC, carbon anode and cathode electrodes were assembled with a proton exchange membrane (PEM). TBE MFC was consisted of brush-type anode and carbon cloth cathode electrodes without the PEM. A brush-type anode was fabricated with carbon fibers and was placed close to the cathode electrode to reduce the internal resistance. Substrates used in this study were glucose, leachate from cattle manure, or sucrose at different concentrations with phosphate buffer solution (PBS) of 200 mM to increase the conductivity thereby reduce the internal resistance. Hydrogen generating bacteria (HGB) were only inoculated in TBE MFC. The peak power densities ($P_{peak}$) produced from the SCME systems fed with glucose and leachate were 18.8 and $28.7mW/m^2$ at external loads of 1000 ohms, respectively. And the $P_{peak}$ produced from TBE MFC were 40.1 and $18.3mW/m^2$ at sucrose concentration of 5 g/L and external loads of 470 ohms, with a mediator (2-hydroxy-1, 4-naphthoquinone) and without the mediator, respectively. The maximum power density ($P_{max}$) produced from mediator present TBE MFC was $115.3mW/m^2$ at 47 ohms of an external resistor.

Coordinated Control Modeling and Simulation among the Voltage Compensation Equipments Using Python (Python을 이용한 전압보상설비의 상호 협조제어 모델링 및 시뮬레이션)

  • Lee, Sang-Deok;Baek, Young-Sik;Seo, Gyu-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The ultrafashionable machinery that require high quality electricity power has been daily come into being. Because domestic power system has been larger and more complicated in accordance with raising power demand by power market requirement. Because of these power market situations, The FACTS (Flexible AC Transmission System) which is power transmission system for the next generation to meet flexible supply the power and reliability has been applied. If they, compensators and FACTS, are used inter-efficiently in range that does not affect the stability and a badly influence the security, they might be increase in the voltage stability of system, supply reliability and also achieve the voltage control in a suddenly changed power system. Therefore we describe and suggest on this treatise that a plan for coordination control between UPFC, Shunt elements (Sh. Capacitors & Sh. Reactors) among compensators and also describe the method to keep or control the voltage of power system in allowable ranges. The method follows that, we used characteristics of each equipment, UPFC would be also settled to keep the identified voltage range in change of load bus, Shunt elements also would be settled to supply the reactive power shortage in out of operating range of UPFC to cope actively with change of the power system. As the result of simulation, it is possible to keep the load bus voltage in limited range in spite of broad load range condition. This helps greatly for the improvements of supply reliability and voltage stability.

Pretilt angle and EO Characteristics of Liquid Crystal via Ion-beam Irradiation Angles (이온빔 조사각도에 따른 액정의 프리틸트각과 전기 광학적 특성)

  • Lee, Kang-Min;Lee, Won-Kyu;Oh, Byeong-Yun;Kim, Byoung-Yong;Han, Jin-Woo;Jeon, Ji-Yeon;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.44-44
    • /
    • 2008
  • To date, rubbing has been widely used to align LC molecules uniformly. Although rubbing can be simple, it has fundamental problems such as the generation of defects by dust and static electricity, and difficulty in achieving a uniform LC alignment on a large substrate. Therefore, non contact alignment has been investigated. Ion beam induced alignment method, which provides controllability, nonstop process, and high resolution display. In this study, we investigated liquid crystal (LC) alignment with ion beam (IB) that non contact alignment technique on polyimide and electro-optical characteristics of twisted nematic (TN)-liquid crystal display (LCD) on the polyimide under various ion beam angles. In this experiment, Polyimide layer was coated on glass by spin-coating and Voltage-transmittance(VT) and response time characteristics of the TN cell were measured by a LCD evaluation system. The good characteristics of the nematic liquid crystal (NLC) alignment with the ion beam exposure polyimide surface was observed. The tilt angle of NLC on the PI surface with ion beam exposure can be measured under $1^{\circ}$ for all of irradiation angles. In addition, it can be achieved the good EO properties, and residual DC property of the ion beam aligned TN cell on polyimide surface.

  • PDF

The Effect of Sintering on the Thermoelectric Properties of Bulk Nanostructured Bismuth Telluride (Bi2Te3) (나노구조를 기반으로 하는 Bi2Te3 소결과 그 시간에 따른 열전 특성)

  • Yu, Susanna;Kang, Min-Seok;Kim, Do-Kyung;Moon, Kyung-Sook;Toprak, M.S.;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.561-565
    • /
    • 2014
  • Thermoelectric materials have been the topic of intensive research due to their unique dual capability of directly converting heat into electricity or electrical power into cooling or heating. Bismuth telluride ($Bi_2Te_3$) is the best-known commercially used thermoelectric material in the bulk form for cooling and power generation applications In this work we focus on the large scale synthesis of nanostructured undoped bulk nanostructured $Bi_2Te_3$ materials by employing a novel bottom-up solution-based chemical approach. Spark plasma sintering has been employed for compaction and sintering of $Bi_2Te_3$ nanopowders, resulting in relative density of $g{\cdot}cm^{-3}$ while preserving the nanostructure. The average grain size of the final compacts was obtained as 200 nm after sintering. An improved NS bulk undoped $Bi_2Te_3$ is achieved with sintered at $400^{\circ}C$ for 4 min holding time.

Electrical and Physical Properties of Sheath-core Type Conductive Textile Sensor with Home-Textile (Sheath-core 구조 전도사 섬유센서의 Home-Textile 적용을 위한 전기·물리학적 특성연구)

  • Cho, Kwang-Nyun;Jung, Hyun-Mi
    • Fashion & Textile Research Journal
    • /
    • v.16 no.1
    • /
    • pp.145-152
    • /
    • 2014
  • The usage of textile-based sensors has increased due to their many advantages (compared to IT sensors) when applied to body assessment and comfort. Textile-based sensors have different detecting factors such as pressure, voltage, current and capacitance to investigate the characteristics. In this study, textile-based sensor fabrics with sheath-core type conductive yarns were produced and the relationship between capacitance changes and applied load was investigated. The physical and electric properties of textile-based sensor fabrics were also investigated under various laminating conditions. A textile based pressure sensor that uses a sheath-core conductive yarn to ensure the stability of the pressure sensor in the textile-based sensor (the physical structure of the reaction characteristic of the capacitance) is important for the stability of the initial value of the initial capacitance value outside the characteristic of the textile structural environment. In addition, a textile based sensor is displaced relative to the initial value of the capacitance change according to pressure changes in the capacitance value of the sensor due to the fineness of the high risk of noise generation. Changing the physical structure of the fabric through the sensor characteristic of the pressure sensor via the noise generating element of laminating (temperature, humidity, and static electricity) to cut off the voltage output element to improve the data reliability could be secured.

Development of Heating Device Using Concentrator Solar Cells (집광형 태양전지를 이용한 난방장치 개발)

  • Lee, Dong Il;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • In this study, the generation efficiency of the limited area of a concentrator solar cell was increased by using a solar concentrator and a tracking device. Heat generated by the solar cell was collected using a thermal absorber for supplying hot water or heating. Thus, the concentrator solar cell system provided electricity and heat simultaneously. Tracking of the sun by detecting the sun's position, repositioning of heating device towards the east after sunset, and shutting down of system after sunset were successfully implemented using an illuminance sensor (CdS) and Simulink, a commercial software package. We performed parametric analysis of the velocity, fin installation, and entrance location with respect to the operating temperature of the concentrator solar cell. A heat transfer simulation model was developed for comparing the actual temperature profiles of the concentrator solar cell and thermal absorber, and good agreement was found between the results of the simulations and the experiments.

Estimation of Greenhouse Gas (GHG) Reductions from Bioenergy (Biogas, Biomass): A Case Study of South Korea (바이오에너지 (바이오가스, 바이오매스) 기술의 온실가스 감축산정: 국내를 대상으로)

  • Jung, Jaehyung;Kim, Kiman
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.393-402
    • /
    • 2017
  • In this study, greenhouse gas (GHG) reductions from bioenergy (biogas, biomass) have been estimated in Korea, 2015. This study for construction of reduction inventories as direct and indirect reduction sources was derived from IPCC 2006 guidelines for national greenhouse gas inventories, guidelines for local government greenhouse inventories published in 2016, also purchased electricity and steam indirect emission factors obtained from KPX, GIR respectively. As a result, the annual GHG reductions were estimated as $1,860,000tonCO_{2eq}$ accounting for 76.8% of direct reduction (scope 1) and 23.2% of indirect reduction (scope 2). Estimation of individual greenhouse gases (GHGs) from biogas appeared that $CO_2$, $CH_4$, $N_2O$ were $90,000tonCO_2$ (5.5%), $55,000tonCH_4$ (94.5%), $0.3tonN_2O$ (0.004%), respectively. In addition, biomass was $250,000tonCO_2$ (107%), $-300tonCH_4$ (-3.2%), $-33tonN_2O$ (-3.9%). For understanding the values of estimation method levels, field data (this study) appeared to be approximately 85.47% compared to installed capacity. In details, biogas and biomass resulting from field data showed to be 76%, 74% compared to installed capacity, respectively. In the comparison of this study and CDM project with GHG reduction unit per year installed capacity, this study showed as 42% level versus CDM project. Scenario analysis of GHG reductions potential from bioenergy was analyzed that generation efficiency, availability and cumulative distribution were significantly effective on reducing GHG.

Design of smart mobility status notification system (스마트 모빌리티 상태 알림 시스템 설계)

  • Park, Se-il;Jang, Jong-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2128-2132
    • /
    • 2017
  • Smart mobility is rapidly emerging as a next-generation eco-friendly transportation system, and the market is booming every year. However, due to the characteristics of the devices that use electricity as the power source, the motor and the battery are different from the performance and actual performance indicated by the manufacturer depending on the user's weight and driving environment. Therefore, The frequency of the overload is increased and the failure and damage of the device are increasing. In this paper, we propose an application that provides personalized recommended driving guidance and overloaded driving situation notification at the actual driving separately from the recommended driving provided by the manufacturer after measuring the driving environment of the user, so as to prevent malfunction and damage of the smart mobility device, To ensure safety.

Feature Extraction of Simulated fault Signals in Stator Windings of a High Voltage Motor and Classification of Faulty Signals

  • Park, Jae-Jun;Jang, In-Bum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.965-975
    • /
    • 2005
  • In the case of the fault in stator windings of a high voltage motor. it facilitates certain destructive characteristics in insulations. This will result in a decreased reliability in power supplies and will prevent the generation of electricity, which will result in huge economic losses. This study simulates motor windings using normal windings and four faulty windings for an actual fault in stator winding of a high voltage motor. The partial discharge signals produced in each faulty winding were measured using an 80 PF epoxy/mica coupler sensor. In order to quantified signal waves its a way of feature extraction for each faulty signal, the signal wave of winding was quantified to measure the degree of skewness shape and kurtosis, which are both types of statistical parameters, using a discrete wavelet transformation method for each faulty type. Wave types present different types lot each faulty type, and the skewness and kurtosis also present different quantified values. The result of feature extraction was used as a preprocessing stage to identify a certain fault in stater windings. It is evident that the type of faulty signals can be classified from the test results using faulty signals that were randomly selected from the signal, which was not applied in the training after the training and learning period, by applying it to a back-propagation algorithm due to the supervising and learning method in a neural network in order to classify the faulty type. This becomes an important basis for studying diagnosis methods using the classification of faulty signals with a feature extraction algorithm, which can diagnose the fault of stator windings in the future.